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Abstract: In this work an algorithm to track multiple agents in an indoor Wireless Sensor Actor Network (WSAN)
is proposed. The algorithm falls into the category of the radio frequency localization/tracking methods, since it
exploits the strength of the wireless communications among nodes to establish the position of a set of mobile
nodes within a network of fixed nodes placed in known locations. In this sense, a radio channel model is
introduced that allows to estimate the distances among nodes to attain localization and tracking (range-based
approach). Moreover, to compensate for the scant robustness of power measurements, the loss effects induced
by wireless communication, the intrinsic uncertainty of unstructured environments, the algorithm resorts to an
Extended Kalman Filter to process the node measurements and reach a desired level of tracking performance.

Finally, the design phase is validated through the implementation and the experiments on a real testbed.
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1 Introduction

In recent years, the employment of Wireless Sensor
Actor Networks (WSANSs) for gathering data from
the environment have been increasingly envisaged
for building management systems and environment
control [1][2][3], thanks to their versatility of
use, easiness of deployment, pervasiveness of data,
adaptability to system and environment variations [4].

Examples in this sense are given by Heating and
Ventilation Air Conditioning (HVAC) systems [5]
employing more and more advanced control
techniques (e.g. [6]) that would benefit from a
detailed mapping of the internal building parameters;
by event detection and surveillance systems,
where the heterogeneity of agent devices and the
computational grid created by the network itself
allows the definition of data fusion policies and
autonomic algorithms [7][8] ; by localization and
tracking systems where the wireless devices can
exploit the received power signal during broadcast
or peer-to-peer communication to perform position
estimation [9][10].

The work presented in this paper belongs to
this last framework, the RF-based localization and
tracking, and in particular to the multi-agent tracking
problem, where a set of mobile devices are moving
within a network of fixed (and known) position similar
devices (beacons), with which they communicate

through a radio frequency (RF) channel exchanging
information on the surrounding.

State of the art In the framework of distributed
systems composed of not-expensive embedded
devices, one immediate advantage of RF-based
localization and tracking with respect to other
methodologies is that the former does not need
additional hardware components such as ultrasound,
infrared, or light modules, to generate the localization
signal that is then measured to compute the angle
of arrival, the time of arrival, or time difference of
arrival [11]. Examples of these systems are given
in [12][13][14].

Differently, the RF-based method parasitically
exploits the communication flow that is anyway
ongoing among the nodes, and the measurement
techniques is relying on the Radio Signal Strength
(RSS) either basically inverting the relation between
the distance and the received power (radio-channel
model), or matching the received power with a
pre-compiled map of the environment linking power
values to positions. Common references for the
former range-based methods and the latter range-free
methods are respectively [9] and [15].

In this context, it appears how the accuracy
in the localization/tracking strongly depends on the
quality of the specific embedded hardware devices



and how the algorithmic solutions aim at providing
software correction procedure to improve the basic
performance of the system.

In particular, a solution is sought that, while
guaranteeing a certain level of tracking accuracy, is
easy to implement, does not require high resources to
the embedded device, is robust to node failure, and
quick enough to converge for real-time use.

This work is coupled with a companion
paper [16], where the implementation of the
multi-agent tracking system is discussed.  The
motivation of this choice resides in the fact that,
beyond the adopted models and the algorithmic
solutions developed, in the framework of embedded
device applications, also the specific implementation
plays a crucial réle in reaching the desired (and
designed) performance.

Paper organization Sec. 2 introduces the channel
model adopted by the tracking algorithm, while
in Sec. 3 we describe our proposed algorithm
for determining mobile nodes positions through an
Extended Kalman Filter (EKF) [17] approach. Sec. 4
and Sec. 5 contain, respectively, a simulation based on
experimental network data and some conclusions.

In general, we will use bold fonts to indicate
vectorial quantities, plain italic fonts to indicate scalar
ones, capital vertical fonts to indicate matrices.

2 Channel modeling

The performances of tracking algorithms are
influenced by the effects of noises and disturbances
introduced into the communication channel, so
it is necessary to identify these contributions as
accurately as possible. The measurements of
received power exchanged by agents in a WSAN
are affected by objects in the environment (such as
walls or furnitures) that cause attenuation, reflection,
diffraction and diffusion effects. Moreover, errors
that vary over time are caused by generic noises
and interferences. Based on these considerations,
we present a general channel model which takes
into account different kind of disturbances. Then
we focus on a reduced channel model, subject to
particular assumptions, that we employ to design the
multi-agent tracking algorithm.

2.1 General model

As we previously stated, to model the channel in
an indoor environment it is necessary to consider
different factors: The free-space path loss, which
expresses the power loss due to dissipation of energy

in the channel, the fading phenomena, like shadowing
and multi-path, which express the variability of the
channel.

A WSAN is usually treated as a graph G =
(N, &), where the set N of the nodes (i.e. agents)
communicate along the edges (i.e. communication
links) specified by the set £. Given a node i, the set
V(i) :={j|(i,7) € E,i # j} collects its neighbors.

In our context the WSAN is primarily composed
of a set F of F' nodes in fixed positions, that do not
know a priori their neighbors V(i), i = 1,..., F, but
instead they know their positions z; := (Z;,7;), in the
2D space. A model that describes the wireless channel
between two nodes, in terms of received power P, is
the following [18]:

Pyj = P{* + i+ fuldig) + fsf(2i, 25)
+ fal(zi, 25) +vpp(t) + o;, (1)

where ¢ and j are the receiver and transmitter node, at
a distance d;; := ||z; — z;|| (|| - || being the classical
euclidean norm). Moreover, P]t“*’ is the transmitted
power, r; is the transmission offset between the
nominal and the effectively transmitted power (which
is usually reported in the datasheet of the devices);
fpi(+) represents the path loss; fo(-) represents the
channel asymmetry factor; f,7(-) models the slow
fading components while the vys(-) represents the
fast ones, and o;(+) represents the measured received
strength offset of the receiving node.

2.2 Simplified model

The parameters of the Eqn. (1) depend on the
environment where the WSAN is deployed and the
specific hardware of the wireless devices. In general,
to perform a channel parameter identification, the
model of Eqn. (1) is simplified assuming that the
transmission power of the sensors is set at the
maximum level (i.e. me = 0dBm, Vj € N) so
that the transmitter offset is almost zero, r; = 0 dBm.
Furthermore, we consider that o; = 0, Vi € N,
since the offsets can be easily compensated exploiting
a distributed strategy [18] L Lastly, the fast fading
effect vy (t) is removed, by averaging the received
power over a set of 0 < C;; < C consecutive

measures: P;; = Zg’zjl PZ’; It follows that the

average received power P;; becomes:

Pij = 8 —10v1ogyo(dij) + fsp(2i, 2j) + fa(2i, 2)).
()

"Experimental evidence indicates that agent offsets o; are not
negligible and can be substantially large for some nodes (up to
6 dBm). The effect of this offset is to bias the estimate of the
distance between two nodes, which is particularly harmful in
tracking applications.




Since the components of slow fading and channel
asymmetry are independent Gaussian random
variables of variance crgf and o2 respectively, they
can be combined into one zero-mean random variable
q;; with variance equal to 0 = o2 + aff:

Pij = B —10vlog,(dij) + gij- 3

From Eqn. (3) it is clear that 8 and ~ are
the only parameters that determine the model of
the communication channel. Being the components
of slow fading and channel asymmetry independent
Gaussian random variables, we can use a (distributed)
least-squares estimator to estimate those parameters,
as it has been addressed in [19].

3 Tracking algorithm

Suppose that in the WSAN a set M of M mobile
nodes can freely move. Thus the WSAN is overall
constituted by F' + M agents, in the set N' = F @
M. The proposed algorithm, that allows to estimate
the 2D position of a mobile node is based on the
assumptions that, at each time step k, k& € Z each
mobile node m, m € M, knows:

e the coordinates z,, of each fixed node n € F;

e the power P, received from each n € Vi (m),
fixed node over a period of time [(k — 1) k],
where Vi (m) is the set of the Fj, neighbors of
node m in the period [(k — 1) k] (notice that
Fj, < dim(F) changes at each time step k);

e the channel parameters 3 and ~;

Aim of the algorithm is the disjoint estimation of the
coordinates &,,(k) := (2 (k),ym(k)) € R? of the
mobile nodes, at each time step k.

3.1 State-space model
Define the quantities

Znq
Z(k):= | : [er

L ank

hn; (€m(k), 2n,) := B — 10710y ([[€m (k) — 2n, ) € K

by (&m(K), zn,)

h (&n(k),Z(k)) = e R"
i g, (gm(k))anJ
[ Prny (K)
P(k) = : € R
| P, (F)

For each mobile node m we have the state model:
En(k+1) = A&n(k) +w(k) =&n(k) +w(k) 4)
and the measurements model:

Y (k) = h(&n(k), Z(K)) + v(k) (5)

where Z(k) is the matrix of known positions z,,,, with
i=1,..., Fy of the fixed nodes and &,,, (k) is the state
of the system, i.e. the 2D position of each mobile node
m € M; (k) is the output of the system, made of F},
powers stored by the mobile node and available at the
time k. The process noise w(k) and the measurement
noise v(k) are white, with zero mean and variance
W € R?*2 and V(k) € RF#*F% respectively. w(k)
and v(k) are uncorrelated.

As we can see, the state transition model is
linear and the matrix A is the identity matrices,
denoting a typical behavior of a simple random walk.
Thus the mobile node is represented as a point mass
moving on the 2D plane, surrounded by a cloud of
Gaussian uncertainty. The model of the measures is
rather constituted by the channel model (3), which
is non-linear. Notice how the measurement model is
time variant, i.e. its dimension varies at each time
step k£ according to the number F} of the collected
power measurements. Specifically, at each time step k
a mobile node m collects F}, averaged measurements
P, (k) from its dynamic neighbors n; € Vi,(m).

3.2 Structure of the algorithm

Assume without loss of generality that dim(M) = 1.
We define £(k) := &,,(k) to indicate the position
of the only mobile node m € M. The idea behind
the algorithm is to operate two different types of
filtering depending on the number Fj,. If Fj, < 3 the
mobile node updates its state following an open-loop
approach, otherwise it uses an EKF technique.

The choice of two approaches derives from the
fact that we want to provide the EKF a minimum

o~

number of measures to update the estimate &(k|k).
That minimum has been arbitrarily set equal to 3,
recalling somewhat the constraint that appears in
the algorithms based on trilateration/triangulation
methods. If the measures available in the various
sampling instants are less than 3, the algorithm
expects to leave the filter in a open loop. The
mobile node continues to regard as an estimate of
the current position the last estimated position based
on measurements received, but increasing step by
step the variance of the filtering error. This approach
forces the filter to consider the mobile node still in
the same position both if there is packet loss (or the
mobile node is simply in a dead zone) and if the



acquired measurements are somehow corrupted.

Now let’s see in detail the two types of filtering
presented. Every period [(k — 1) k] the mobile node
m identifies the set Vi(m), i.e. the F} neighboring
nodes, based on the measurements that it has collected
in that time interval. If Fj, > 3 the function h(-) is
linearized near the point &| (k|k — 1), which is the best
estimation of the mobile node state at the instant k.
Then the Jacobian:

dh(g,- o
H(k) = {(E’ )” € RFw*2
€ Jle-¢
is computed, which yields

10vlogge
| €l = 1) = zqw)|

H(k) = —

Then, the minimum variance linear estimator &| (k|k)
of the state £(k), based on the observations ¥ (k), is
computed through the recursive algorithm:

A(k)=H(k) Q(klk—1) H(k)" + V (k)
L(k)=Q(klk—1)H(k)" A(t)™!
Q(k[k)=Q(k|k—1)
where the minimum variance linear predictor E (k +
1]k) is given by

E(k+1]k) = AE(k[k) = &(k|k)

Q(k+1[k) = AQ(k[k—1) AT + W = Q(k[k) + W
with A(k) variance of the innovation process e(k) =

(k) — H(k:)g(k:|k: — 1) and L(k) gain of the filter.
If F}, < 3 we have:

E(k|k) = E(kIE—1)

Q(k|k) = Q(k|k—1)

that jointly become:
E(k+1[k) = E(k|k—1)
Q(k+1lk) =Q(k|k—1)+ W

outlining clearly the effect of the stationary solution.
The scheme of the algorithm is summarized by Alg. 1.

E(k+1[k) = E(k|k)
Q(k+1]k) = Q(klk) + W

Initial conditions The initial conditions of the
algorithm are defined as £(0] — 1) = po Q0] —
1) = Qp, with o = E[£(0)] and Qp = var{£(0)}.
Since these quantities are not known in advance,
specific estimation techniques can be used to get a
guess. Trilateration, bounding box or least-square
methods are some of the simplest and most popular
for estimating the initial position [20], [21].

5 (&klk—1) —2(h))

Algorithm 1 Generic mobile node tracking
1: £(k|k) € R?; Q(klk) e R2*?and k = 0,2, ...

2: 0w € R, noise model variance
3: o0, € R, noise measure variance

set:  £(0] —1) = po
4 Q0] —1) = Qg
W =02l

5: set up of the measurements data set, collecting Fj, power
transmission from neighboring nodes.

6: fork=0,2,...do
7. V(k) = ollr,
8: if £} > 3 then
9: A(k)=H(k) Q(k|k— 1) (k)" + V(k)
10: I:(k) Q(klk—1)H(k)" A(t)~"
1 E(k|k) =E(k|k—1)+L(k) [ ( (k\k—l))]
12: Q(k|k)= Q(k|k—1)
' = Q(klk—1)H(k)" A" H(k) Q(k[k—1)
13: else R
14: E(k|k) = €(k|k—1)
15: Q(k|k) = Q(k|k—1)

16:  &(k+1|k) = E(k|k)
17: Q(k+1]k) = Q(klk) + W

—Q(k|k—1)H(k)" A~" H(k) Q(k|k—1)

Standard deviation o, of model noise w(k)
Typically, to tune the EKF statistical procedures are
used, as the cumulative periodogram test of Bartlett.
For this specific case, however, we opted for an
empirical calibration. Assuming that the mobile node
is anchored to a human user, its variance, at each
[(k — 1) k], can be set equal to that associated to
a typical human motion, and therefore to define the
diagonal elements of W. If we considered the fastest
man in the world, with a sampling time of 60 ms
between two consecutive estimations, the variance
model would correspond to 0.3844 m?, which can be
thought as an upper bound to the variance.

Standard deviation o, of measurement noise v (k)
This variance is usually easily available from the
specific of sensing device with whom measurements
are performed. Since, in this case, the measuring
instrument is the communication channel, all the
variances of the fading effects and asymmetry of the
channel should be accurately evaluated. In Sec. 4 a
practical example for a specific device is given.

4 Simulations with experimental setup

To validate the algorithm described in Sec. 3 some
simulation have been performed on the base of the
network data derived from the WSAN installed in



the Department of Information Engineering (DEI) of
the University of Padova [4]; the testbed considered
(a portion of the mentioned WSAN) comprises 12
TMOTE™ SKY [22], ultra low power IEEE 802.15.4
compliant wireless devices, whose Chipcon CC2420
radio has an accuracy of 6 dBm. Here, the agents
have a distance of about 4 meters from each other on
a almost regular triangular grid of 15 x 10 m?.

For the estimation of the channel parameters S,
v of (3) the least-square method in [19] which is a
distributed version of [18] has been adopted. The
results (v = 2.04, B = —41.69 dBm) provides
the model in Fig. 1 with a variance 0% = 7.57 m2.
The packet loss probability in Fig. 1, equal for each
agent, is obtained as a least-square interpolation of
experimental data collected in the testbed of DEI.
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Figure 1: Left: power model P = 3 — ~vlog( d, as
function of distance d. Right: packet loss probability.
The red dots are samples computed on experimental
data; the blue line is their least-square interpolation.

The movement of an agent is simulated through a
random walk model

1 01 0 O
0 1 0 0
0 0 0 1

W=y o 1 o €W+ vin

where £1(0) ~ U[0,15], £2(0) ~ U [0,10] and the
variances of model and measure noise w(k) and v (k)
are respectively given by:

0.01 01 O 0
0.1 1 0 0
0 0 0.01 0.1
0 0 01 1

Q=94 01

In Fig. 2, the position estimation error ||€ —
&||2 is plotted for different algorithm parameters.
Interestingly, the value of C' (maximum number of
RSS data that each agent collects from neighbors to
average the received power), over a certain threshold,
does not affect significantly the position estimate,

R=0.0315 F 0] .

while the promptness of the system slows down
increasing C'. The system behaves similarly as for
the bound on the received power, and increasing
RS Spound (the minimum power level acceptable for
node-to-node distance estimation) would lower the
number of useful signals in the localization process.
Finally, increasing the measurement noise variance
Jg, worsen the performance of the system, as
expected.
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Figure 2: Estimation errors for different simulation
parameters.

5 Conclusions

In this work, an algorithm for multi-agent tracking
in wireless networks is presented, employing a
RF-channel model to estimate the distance among
nodes. Moreover, to mitigate the nuisances induced
by the not perfect wireless communication, by the
implementation in an unknown and unstructured
environment, and by the presence of noisy



measurements, an EKF is employed to provide
corrected estimates of the mobile agent positions. The
simulations with data coming from an experimental
testbed validate the goodness of the approach and
assess it is suitable for a real time implementation on
embedded devices.
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