



Abstract—In this work the design and implementation of an

application to track multiple agents in a indoor Wireless Sensor Actor

Network (WSAN) is proposed. We developed a tracking algorithm

that falls into the category of the radio frequency localization/tracking

methods, that exploit the strength of the wireless communications

among fixed and mobile agents to establish the position of the mobile

ones. The algorithm resorts to an Extended Kalman Filter to process

the agents measurements and reach a desired level of tracking

performance. The tracking application, namely Teseo, is composed by

a low-level NesC management software for the agents side and a Java

graphical interface provided to users connected to mobile agents. A

detailed description of the operations performed by Teseo is given,

accompanied both by simulations to validate the tracking algorithm

and experiments on a real testbed to test Teseo.

Keywords—Wireless sensor network, tracking, localization,

Kalman filter, embedded systems, TinyOS, NesC

I. INTRODUCTION

N recent years, the employment of Wireless Sensor Actor

Networks (WSANs) to gather data from the environment

have been increasingly envisaged for building management

systems and environment control [1], [2], thanks to their

versatility of use, easiness of deployment, pervasiveness of

data, adaptability to system/environment variations [3], [4],

[5]. Examples in this sense are given by Heating and

Ventilation Air Conditioning (HVAC) systems [6] employing

more and more advanced control techniques that would benefit

from a detailed mapping of the internal building parameters; by

event detection and surveillance systems, where the

heterogeneity of agent devices and the computational grid

created by the network itself allow the definition of data fusion

policies [7], [8]; by localization and tracking systems where the

wireless devices can exploit the received power signal during

broadcast/peer-to-peer communication to perform position

estimation [9].

The growing interested for the WSANs has been supported

by the diffusion of small and cheap devices, capable of radio

frequency (RF) communication, computation, and memory,

although of limited resources. An example in this sense is the

Tmote Sky [10], an ultra low power IEEE 802.15.4 compliant

wireless device, which has become a reference in the academia

F. Zanella and A. Cenedese are with the Information Engineering

Department, University of Padova, via Gradenigo 6/B, 35131, Padova, ITALY

(phone: 0039-049-8277600; fax: 0039-049-8277699; e-mail:

filippo.zanella@dei.unipd.it, angelo.cenedese@unipd.it).

for the early development of algorithms and applications for

WSANs. These devices are based on the TinyOS operative

system [11] and are programmed in NesC [12], a C-derived

language specifically developed for embedded systems.

A. Contribution

The work presented in this paper belongs to framework of

the RF-based localization and tracking, and in particular to the

multi-agent tracking problem, where a set of mobile devices

(i.e. mobile nodes) are moving within a network of fixed (and

known) position similar devices (i.e. fixed nodes), with which

they communicate through a RF channel exchanging

information on the surrounding.

In this paper we introduce an easy to implement and fast

responsive Extended Kalman Filter (EKF) approach for the

RF-based localization and tracking, and we describe the

implementation stages of Teseo application we developed,

which is a combination of NesC and Java software. We show

how the implementation in this framework is particularly

challenging since the tracking procedure requires correct

communication, scheduling, and synchronization among the

devices to work properly and attain the expected performance.

Moreover, the limited resources available to the embedded

devices calls for efficient coding solutions, both in terms of

memory and computational power. The code is available freely

as open-source on Sourceforge [13], distributed under the

GNU General Public License, Version 3, 29th June 2007,

whom copyrights are owned by the Free Software Foundation.

B. State of the art

In the framework of distributed systems composed of not-

expensive embedded devices, one immediate advantage of RF-

based tracking with respect to other methodologies is that the

former does not need additional hardware components such as

ultrasound, infrared, or light modules, to generate the

localization signal that is then measured to compute the angle

of arrival, the time of arrival, or time difference of arrival [14].

Differently, the RF-based method parasitically exploits the

communication flow that is anyway ongoing among the nodes,

and the measurement techniques is relying on the Radio Signal

Strength (RSS) either basically inverting the relation between

the distance and the received power (radio-channel model), or

matching the received power with a pre-compiled map of the

environment linking power values to positions. Common

references for the former range-based methods and the latter

range-free methods are respectively [15] and [16].

Teseo: a multi-agent tracking application in

wireless sensor networks

Filippo Zanella and Angelo Cenedese

I

In this context, it appears how the accuracy in the

localization/tracking strongly depends on the quality of the

specific embedded hardware devices and how the algorithmic

solutions aim at providing software correction procedure to

improve the basic performance of the system.

In particular, a solution is sought that, whereas guaranteeing

a certain level of tracking accuracy, is easy to implement, does

not require high resources to the embedded device, is robust to

failures, and quick enough to converge for real-time use.

C. Paper organization

Sec. 2 introduces the channel model adopted by the tracking

algorithm, while in Sec. 3 we describe our proposed algorithm

for determining mobile nodes positions through an EKF [17]

approach. Sec. 4 briefly explains the interactions between the

agents and the client, Sec. 5 and Sec. 6 are dedicated to the

explanation of the design of Teseo both for the NesC and Java

coding. Sec. 7 contains simulations of the core algorithm based

on an exemplary WSAN configuration. Sec. 8 concludes.

In general, we will use bold fonts to indicate vectorial

quantities, plain italic fonts to indicate scalar ones, capital

vertical fonts to indicate matrices.

II. CHANNEL MODELING

The performances of tracking algorithms are influenced by

the effects of noises and disturbances introduced into the

communication channel, so it is necessary to identify these

contributions as accurately as possible [18]. The measurements

of received power exchanged by agents in a Wireless Sensor

Actor Network (WSAN) are affected by objects in the

environment (such as walls or furniture) that cause attenuation,

reflection, diffraction and diffusion effects. Moreover, errors

that vary over time are caused by generic noises and

interferences. Based on these considerations, we present a

general channel model which takes into account different kind

of disturbances. Then we focus on a reduced channel model,

subject to particular assumptions, that we employ to design the

multi-agent tracking algorithm.

A. General model

As we previously stated, to model the channel in an indoor

environment it is necessary to consider different factors: the

free-space path loss, that expresses the power loss due to

dissipation of energy in the channel, the fading phenomena, like

shadowing and multi-path, that express the variability of the

channel.

A WSAN is usually treated as a graph G = (N ;E), where

the set N of the nodes (i.e. agents) communicate along the

edges (i.e. communication links) specified by the set E. Given a

node i, the set V(i) := fj j(i; j) 2E; i 6= jg collects its

neighbors.

In our context the WSAN is primarily composed of a set F

of F nodes in fixed positions, that do not know a priori their

neighbors V(i), i= 1; : : : ; F , but instead they know their

positions zi := (xi; yi), in the 2-dimensional space.

A well agreed channel model is the log-distance path loss

model [19], where the received power is linked to the

transmission power through a log-normal model of path loss,

and other contribution terms are added to take into account of

the other disturbing effects. The model that describes the

wireless channel between two nodes, in terms of received

power Pij, is the following [20]:

Pij := P tx
j + rj + fpl(dij) + fsf (zi;zj)

+ fa(zi;zj) + vff (t) + oi; (1)

where i and j are the receiver and transmitter node, at a

distance dij := kzi¡zjk (k ¢ k being the classical Euclidean

norm). Moreover, P tx
j is the transmitted power, rj is the

transmission offset between the nominal and the effectively

transmitted power (which is usually reported in the datasheet

of the devices); fpl(¢) represents the path loss; fa(¢)

represents the channel asymmetry factor; fsf(¢) models the

slow fading components while the vff(¢) represents the fast

ones, and oi(¢) represents the measured received strength

offset of the receiving node.

A. Simplified model

The parameters of (1) depend on the environment where the

WSAN is deployed and the specific hardware of the wireless

devices. In general, to perform a channel parameter

identification, the model of (1) is simplified assuming that the

transmission power of the sensors is set at the maximum level

(i.e. P tx
j = 0 dBm, 8j 2N) so that the transmitter offset is

almost zero, rj »= 0 dBm. Furthermore, we consider that

oi = 0, 8i 2 N , since the offsets can be easily compensated

exploiting a distributed strategy
1
 [20].

Lastly, the fast fading effect vff(t) is removed, by averaging

the received power over a set of 0 < Cij · C consecutive

measures: P ij :=
PCij

k=1 P
k
ij.

It follows that the average received power P ij becomes:

 Pij = ¯¡10° log10(dij)+fsf(zi;zj)+fa(zi;zj): (2)

Since the components of slow fading and channel asymmetry

are independent Gaussian random variables of variance ¾2
sf

and ¾2
a respectively, they can be combined into one zero-mean

random variable qij with variance equal to ¾2 = ¾2
a +¾2

sf:

 Pij = ¯¡10° log10(dij)+ qij: (3)

1 Experimental evidence indicates that agent offsets o i are not negligible

and can be substantially large for some nodes (up to 6 dBm). The effect of this

offset is to bias the estimate of the distance between two nodes, which is

particularly harmful in tracking applications.

From (3) it is clear that ¯ and ° are the only parameters that

determine the model of the communication channel. Being the

components of slow fading and channel asymmetry

independent Gaussian random variables, we can use a

(distributed) least-squares estimator to estimate those

parameters, as it has been addressed in [19].

III. TRACKING ALGORITHM

In this section we describe our proposed algorithm for

determining mobile nodes positions.

Suppose that in the WSAN a set M of M mobile nodes can

freely move. Thus the WSAN is overall constituted by F +M

agents, in the setN =F ©M.

The proposed algorithm, that allows to estimate the 2-

dimensional position of a mobile node is based on the

assumptions that, at each time step k , k 2 Z each mobile node

m, m 2M, knows:

 the coordinates zn of each fixed node n 2 F ;

 the average power Pmn received from each

n2Vk(m) fixed node over a period of

time[(k¡1) k], where Vk(m) is the set of the Fk

neighbors of node m in the period [(k¡1) k]

(notice that Fk · dim(F) changes at each time

step k);

 the channel parameters ¯ and ° ;

Aim of the algorithm is the disjoint estimation of the

coordinates »m(k) := (xm(k); ym(k)) 2R2 of the mobile

nodes, at each time step k .

A. State-space model

Define the quantities

Z(k) :=

2

6
4

zn1

...

znFk

3

7
52 RFk£2

hni
(»m(k); zni

) := ¯ ¡ 10° log10 (k»m(k)¡ zni
k)2 R

h (»m(k);Z(k)) :=

2

6
6
4

hn1
(»m(k);zn1

)
...

hnFk

³
»m(k);znFk

´

3

7
7
52 RFk

and

 Ã(k) :=

2

6
4

Pmn1
(k)

...

PmnFk
(k)

3

7
52 RFk

For each mobile node m we have the state model:

 »m(k+1) =A»m(k)+w(k) = »m(k)+w(k) (4)

and the measurements model:

 Ã(k) = h(»m(k);Z(k))+v(k) (5)

where Z(k) is the matrix of known positions zni, with

i= 1; : : : ;Fk of the fixed nodes and »m(k) is the state of the

system, i.e. the 2-dimensional position of each mobile node

m 2M; Ã(k) is the output of the system, made of Fk

powers stored by the mobile node and available at the time k .

The process noise w(k) and the measurement noise v(k) are

uncorrelated, white, with zero mean and variance W2R2£2

and V(k) 2RFk£Fk, respectively.

As we can see, the state transition model is linear and the

matrix A is the identity matrices, denoting a typical behavior of

a simple random walk. Thus the mobile node is represented as

a point mass moving on the 2-dimensional plane, surrounded

by a cloud of Gaussian uncertainty.

The model of the measures is rather constituted by the

channel model (3), which is non-linear. Notice how the

measurement model is time variant, i.e. its dimension varies at

each time step k according to the number Fk of the collected

power measurements. Specifically, at each time step k a mobile

node m collects Fk averaged measurements Pmni
(k) from its

dynamic neighbors ni 2 Vk(m), i= 1; : : : ;Fk.

B. Structure of the algorithm

Assume without loss of generality that dim(M) = 1. We

define »(k) := »m(k) to indicate the position of the only

mobile node m 2M. The idea behind the algorithm is to

operate two different types of filtering depending on the

number Fk. If Fk < 3 the mobile node updates its state

following an open-loop approach, otherwise it uses an EKF

technique.

The choice of two approaches derives from the fact that we

want to provide the EKF a minimum number of measures to

update the estimate b»(kjk). That minimum has been arbitrarily

set equal to 3, recalling somewhat the constraint that appears

in the algorithms based on trilateration/triangulation methods.

If the measures available in the various sampling instants are

less than 3, the algorithm expects to leave the filter in an open

loop. The mobile node continues to regard as an estimate of

the current position the last estimated position based on

measurements received, but increasing step by step the

variance of the filtering error. This approach forces the filter to

consider the mobile node still in the same position both if there

is packet loss (or the mobile node is simply in a dead zone) and

if the acquired measurements are somehow corrupted.

Now let's see in detail the two types of filtering presented.

Every period [(k¡1) k] the mobile node m identifies the set

Vk(m), i.e. the Fk neighboring nodes, based on the

measurements that it has collected in that time interval.

If Fk ¸ 3 the function h(¢) is linearized near the point

b»(kjk ¡ 1), which is the best estimation of the mobile node

state at the instant k . Then the Jacobian:

 H(k) =

·
dh(»; ¢)

d»

¸¯
¯
¯
¯
»=»

2 RFk£2 (6)

is computed, which yields

 H(k) = ¡
10° log10 e

°
°
° b»(kjk ¡ 1)¡ Z(k)

°
°
°

2

³
b»(kjk¡ 1)¡ Z(k)

´

Then, the minimum variance linear estimator b»(kjk) of the

state »(k), based on the observations Ã(k), is computed

through the recursive algorithm:

¤(k)=H(k)Q(kjk¡1)H(k)T +V(k)

L(k)=Q(kjk¡1)H(k)T ¤(t)¡1

Q(kjk)=Q(kjk¡1)¡Q(kjk¡1)H(k)T ¤¡1 H(k)Q(kjk¡1)

where the minimum variance linear predictor b»(k + 1jk) is

given by

b»(k+1jk) = Ab»(kjk) = b»(kjk)

Q(k+1jk) = AQ(kjk¡1)AT +W= Q(kjk) +W

with ¤(k) variance of the innovation process

e(k) = Ã(k)¡ H(k)b»(kjk ¡ 1) and L(k) gain of the filter.

If Fk < 3 we have:

b»(kjk) = b»(kjk¡1) b»(k+1jk) = b»(kjk)

Q(kjk) = Q(kjk¡1) Q(k+1jk) = Q(kjk) +W

that jointly become:

b»(k+1jk) = b»(kjk¡1)

Q(k+1jk) = Q(kjk¡1) +W

outlining clearly the effect of the stationary solution.

The scheme of the algorithm is summarized by Alg. 1 in Fig. 1.

The use of the EKF approach lies on the fact that it is easy to

implement and it does not require significant computational

resources, thanks to the structure of the filter itself and to the

size of the system. The proposed variant EKF is intrinsically

time-varying and it does not admit regime solutions, even if the

system is stable, but nothing can be said regard observability

(of the linearized system, because Fk is variable). Therefore, as

it is well-known, there is no guarantee that the EKF converge.

The initial conditions of the algorithm are defined as

b»(0j ¡ 1) = ¹0 Q(0j ¡ 1) = Q0, with ¹0 =E[»(0)] and

Q0 =varf»(0)g. Since these quantities are not known in

advance, specific estimation techniques can be used to get a

guess. Trilateration, bounding box or least-square methods are

some of the simplest and most popular for estimating the initial

position [21].

Fig. 1 scheme of the tracking algorithm for a generic mobile agent

The use of the EKF requires knowledge of the standard

deviation ¾w of model noise w(k) and standard deviation ¾v

of measurement noise v(k). Regarding ¾w we opted for an

empirical calibration. Assuming that the mobile node is

anchored to a human user, its variance, at each [(k¡1) k],
can be set equal to that associated to a typical human motion,

and therefore to define the diagonal elements of W. If we

considered the fastest man in the world, with a sampling time

of 60 ms between two consecutive estimations, the variance

model would correspond to 0:3844 m2, which can be thought

as an upper bound to the variance. ¾v is usually available from

the specific of sensing device with whom measurements are

performed. Since, in this case, the measuring instrument is the

communication channel, all the variances of the fading effects

and asymmetry of the channel should be accurately evaluated.

In Sec. 4 a practical example for a specific device is given.

IV. SOFTWARE DESIGN

A set of indexed mobile nodes M= fm1; : : : ;mMg µN

moves within a network of indexed fixed nodes

F = ff1; : : : ;fFg µN, each node running a TinyOS

module and communicating via wireless, assuming the

parameters of the radio channel as known [20].

Also, each mobile node is connected to a client (laptop)

through a USB connection, with the client performing the

multi-agent tracking (MAT) computation envisaged by the

algorithm in Sec. 3 and implementing Java classes for the

Graphical User Interface (GUI).

When one (or more) mobile node mi starts the tracking

process:

1. every Ts ms mi alerts its client Cmi
 to be ready, sending

via USB PCMmax pings every Tp ms; afterwards, mi

sends via wireless PNMmax pings every Tn ms;

2. as Cmi
 receives a ping from mi, it enables a timer that

starts the MAT procedure every Tc ms;

3. the set of fixed nodes ffig that gets in touch with mi

starts to broadcast DMmax messages every Tt ms, for a

period not exceeding Ts ms;

4. mi stores one by one the messages received from the

ffig, filtering them according to a predefined Receive

Signal Strength (RSS) threshold (RSSbound), and

forwards these messages to Cmi
;

5. Cmi
 stores the messages and every Tc ms estimates the

position of mi, showing it in a GUI.

Fig. 2 outlines the schema of MAT scheduling, for a complete

cycle of the algorithm of Ts = TIMER_STEP ms. It compares

with the same time scale the operating modes of the fixed

nodes, the mobile node and the client. Scheme of Fig. 2,

although complete, is simplified, as it does not highlight the

randomness linked to the execution of some events. However,

it is significant for understanding the temporal evolution of the

processes that constitute the main algorithm.

The whole software can be divided into two main blocks,

according to the programming language: NesC for the nodes

and Java for the client. Since in the considered context the

peer-to-peer behavior among nodes appears of major interest,

it will be dealt more in detail in the remainder of the paper.

V. IMPLEMENTATION: NESC FOR NODES

Four message types are defined to exchange information

among different devices Fig. 3:

 mote_ctrl_msg, to start/stop the MAT process. A stop

signal interrupts any communication in progress; vice

versa, a start forces mobile nodes to begin a new cycle

of the algorithm. This message is sent via USB from

Cmi
 to mi;

 ping_client_msg, to ping the clients. It is used by mi to

inform Cmi
 that a MAT is ready to start and to send

configuration settings. This message is sent via USB

from mi to Cmi
; ping_node_msg, to ping fixed nodes.

It is used by mi to ping the ffig in the communication

ranges. This message is broadcast by mi via radio;

 data_msg, to measure RSS values. When mi receives

this message, it computes RSS and sends the

information to Cmi, enabling the position estimate. This

message is broadcast via radio by ffig to mi and via

USB by mi to Cmi.

Fig. 3 Messages exchange between devices. Red arrows indicate

data_msg, purple arrow mote_ctrl_msg, green arrow ping_client_msg

and blue arrows ping_node_msg.

To avoid potential overlaps among tasks, commands or

events related to various operation states of the nodes, nodes

are treated as finite state machines, implying that the operations

of different node states cannot interfere with each other. The

feasible states of fixed nodes ffig are:

 IDLE: inactivity;

 TRANSMISSION: broadcasting data_msg;

while mobile node mi is characterized by the states:

 SEND_CLIENT: sending ping_client_msg;

 SEND_NODE: sending ping_node_msg;

 AUDIT_NODE: auditing data_msg;

 DO_NOTHING: inactivity.

In addition, mi is enabled/disabled by Cmi
 through the

following commands:

 START_MN: starts mobile node;

 STOP_MN: stops mobile node.

Figure 2 Scheduling of tasks, timers, and communication events of node and client devices during MAT

A. Mobile node activity

To understand through an example the function covered by

each of the routine of module MobileNodeP, involved in the

MAT algorithm, we simulate a normal operation of the mobile

node during the tracking procedure. In the description of the

source code will not be mentioned TinyOS modules of

MobileNodeP: they are an integral part of the configuration file

MobileNodeC whose purpose is to delineate both the

programmer and the compiler how the various components are

interconnected.

B.1. Boot

When a mobile node mi is turned on, the boot sequence

commences. In the function booted() of interface Boot

peripherals and environment are initialized, moving mi in the

states DO_NOTHING and WAIT_CMD: mi waits to receive a

START_MN command by client Cmi
.

It is also enabled the user button of the mobile node to allow

user to start, START_MN, or stop, STOP_MN, the mobile

node regardless of the client.

The transmission frequency is set to CHANNEL_RADIO by

command setChannel(uint8_t) of CC2420Config interface. If

the event syncDone(error_t) signals that the routine is

terminated correctly then radio and serial communication are

turned on.

If all operations are carried out properly all the LEDs are

switched on, otherwise it is sufficient that any one LED is off

to indicate that there is a problem in the init. Notified events

startDone(error_t) of CC2420 and RS232 peripherals, a call to

setPower(message_t*, uint8_t) of CC2420Packet sets to

POWER_RADIO the transmission power of ping_node_msg.

After this operations, mobile node waits for a command

from the client side.

B.2. Clock Step

When mi receives a START_MN from Cmi
, it starts the

timer ClockStep that every Ts = TIMER_STEP ms launches

the fired() event. With this instance, the MAT algorithm

begins: mi moves to the SEND_CLIENT state, all packets

counters are reset, and timer ClockSendPingClient starts.

B.3. Clock Send Ping Client

When Tp = TIMER_SEND_PING_CLIENT ms elapse,

Cmi
 is repeatedly informed of the start of the MAT process,

for a number of times equals to PCMmax =

MAX_PING_CLIENT_MSG. This activity is performed by

posting task sendPingClientMsg(), which forwards messages

ping_client_msg to the serial port. Then mi moves to the

SEND_NODE state, stops the timers related to

ping_client_msg sending, and starts the timer

ClockSendPingNode.

B.4. Clock Send Ping Node

When Tn = TIMER_SEND_PING_NODE ms are elapsed,

task sendPingNodeMsg(), periodically posted by the timer,

broadcasts PNMmax = MAX_PING_NODE_MSG messages

of type ping_node_msg, specifying the identification number

(ID) TOS_NODE_ID of the node mi and the settings of the

selected transmission channel. When mi stops to ping fixed

nodes ffig in range, it moves to the AUDIT_NODE states and

stops the timer ClockSendPingClient. Then it waits to receive

data_msg messages.

B.5. Receive data_msg

The fixed nodes ffig that receive at least one

ping_node_msg respond to the mobile node mi sending their

data_msg messages. From these messages mi extracts the

values of RSSI, shifted by a RSSI_OFFSET offset, using the

command getRssi(int8_t) of interface CC2420Packet.

Messages with RSS greater than the threshold RSS_BOUND

are stored in a FIFO queue, Queue<data_msg>, of size

QUEUE_DATA_SIZE.

Then, mi invokes task sendDataMsg(), which forwards to

the serial port all the data_msg messages contained in the

queue; this is done only if the queue has not already been

emptied in a previous sending. mi remains in the

AUDIT_NODE state until timer ClockStep fires again,

hereupon the mobile node returns to the initial conditions,

ready to begin a new cycle. Anytime, the user retains the ability

of stopping the algorithm execution with the command

STOP_MN. In this case all timers are stopped and mi enters

the IDLE state.

B. Fixed node activity

Similarly to the previous subsection, to describe the

implementation of module FixedNodeP, we simulate the

normal operation of the routines involved in the MAT

algorithm.

B.1. Boot

When one fixed node fi turns on, TinyOS starts the boot

sequence. In the function booted() peripherals and environment

are initialized, moving fi to the IDLE state, meaning that the

fixed node fi waits to receive a ping_node_msg message from

a mobile nodemi, via radio communication.

The transmission frequency is set to CHANNEL_RADIO and

if the event syncDone(error_t) signals that the synchronization

has been completed correctly, the radio and serial

communication are turned on.

Notified event startDone(error_t), a call of

setPower(message_t*, uint8_t) sets to POWER_RADIO the

transmission power of data_msg messages. After this operation

the fixed node is ready to receive messages from the network.

B.2. Receive ping_node_msg

When fi receives a first ping_node_msg from a mobile

nodemi, identified by a unique ID[k], k 2 [1 PNMmax], it

starts the timer TimeToSend that every Tt =

TIMER_TRANSMISSION ms launches its event fired(). In this

stage, before moving to the TRANSMISSION state, the node fi

computes the maximum number of data_msg to be sent to the

mobile nodemi, that is given by:

 DMmax :=

¹
Ts ¡ Tn ID[k]

Tt

º

;

where Ts and Tn are the times previously defined. This action

is carried out in order to reduce network traffic. Indeed, in

doing so, the fixed node fi stops the transmission of data_msg

messages before the mobile node in range mi enters in the next

step of the algorithm. The DMmax number is recalculated

every time since it is proportional to the ID[k] of the first

ping_node_msg received, that may change due to the packet

loss phenomena affecting in general the wireless channel, and

in particular the tracking applications [5]. This bound in the

transmission of the data_msg message forces fi to move to the

state IDLE after TtDMmax ms, here remaining unless it

receives other ping_node_msg by some moving mi present in

the environment.

B.3. Clock Send Data Node

When Tt ms elapse, the task sendDataMsg(), periodically

posted by the timer, sends DMmax data_msg messages in

broadcast, specifying the TOS_NODE_ID of the fixed node fi

and leaving empty the fields reserved to the RSS values.

As fi ends to transmit, it returns to the IDLE state and the

timer TimeToSend is stopped; then fi waits for any other

message sent by any mobile nodemi in range.

VI. IMPLEMENTATION: JAVA FOR CLIENT

The software client, named Teseo, has to accomplish the

following two tasks:

1. executing the MAT algorithm from the data transmitted

by the mobile node, based on the network retrieved

information;

2. managing the output flow and the system setup phase

by means of a friendly user interface.

To provide the user with an intuitive interface a Java frame,

instance of the class JFrame, has been designed. The package

is made of the classes:

 Teseo: main frame of the GUI, entry point of the

client. It defines the following nested classes:

 MapPanel: panel that displays the graphical

elements present in the environment (e.g.

fixed nodes, mobile node, planimetry);

 EstimateTimerTask: task that executes the

routines of class Estimation;

 Estimation: object that collects all the

methods and variables to compute the

position estimation of the mobile node;

 Constants: interface for shared constants;

 DataMsg: just alike data_msg;

 MoteCtrlMsg: just alike mote_ctrl_msg;

 PingClientMsg: as ping_client_msg;

 Channel: object to manage the transmission channel

model and the characteristic parameters;

 Node: object that defines a node as an entity made

up of a set of 2-dimensional coordinates and an ID;

 Coordinate2D: generic 2-dimensional coordinates;

 VariantExtendedKalmanFilter2D: the EKF

implementation for the 2-dimensional tracking case

described in Sec. 4.

The frame is depicted in figure Fig. 4, where there can be

highlighted four basic elements: The menu bar, the command

console, the graphical environment and the informative panel.

Fig. 4 view of the GUI Teseo

The menu bar is made up four items, shown in Fig. 5

Fig. 5 menu bar of the frame

Clicking on File ! Save a JFileChooser appears. It allows to

save a text file that is a summary of the mobile node positions

estimated by the EKF in the current run. The name of the file is

formatted taking into account the current date and hour:

Teseo_<dd_MM_yy-HHmm>.txt. From JMenu View it is

possible to show/hide some elements of the frame, like the

Verbose System Information (VSI) (linked to the

JCheckBoxMenuItem VSI) and the fixed nodes distributed in

the graphical environment (JCheckBoxMenuItem Beacons).

Instead, JMenu Settings allows to set:

 the parameters ¯ and ° of the transmission channel,

through the JDialog of Fig. 6 callable by JMenuItem

Channel. The parameters of the JDialog, as they

appears in Fig. 6, are initialized in the method

initMyComponents() of the frame;

Fig. 6 Dialog window for the configuration of the channel

 times Tu (/ K_T_U ms) and ¿u (/ K_TAU_U ms),

that are respectively the refresh time of the GUI, i.e. the

sampling time of the mobile node position visualization,

and the delay with whom the trace of the path of the

mobile node starts to be plotted (the delay corresponds

to the ¿u ms after the reception of the first

PingClientMsg). Both values can be chosen by the

scrollable bars of the dialog windows associated to the

JMenuItem Trace. Values assigned to ¿u and Tu of

JDialog in Fig. 7 cames from the default initialization

brought by initMyComponents() method.

Fig. 7 dialog window of the trajectory settings Tu and ¿u

The graphical environment is a MapPanel, extension of the

class JPanel, that collects a set of methods to show the

movement in R2 of the mobile node in the surrounding

environment. It consists of the layout of the building in which

are positioned the nodes and of a set of icons useful to point

the positions of the fixed nodes and the different positions of

the mobile node. In Fig. 8 is given an example of the

MapPanel during a MAT process of a single mobile node.

The command console of Fig. 9 allows to interact with the

mobile node, specifying the virtual serial port of the client to

which the mobile node is connected. Buttons Start and Stop are

used to start/stop the communication between frame and

mobile node.

Fig. 9 consolle di comando del frame

Fig. 8 graphical environment of the frame. The red squares are the

active fixed nodes at that time, the blue squares are the inactive fixed

nodes, the green square is the mobile node and the red path is the

trajectory of the mobile node

In Fig. 10 there are shown the flow charts of the routines

start() and stop().

Fig. 10 Flowchart of the start/stop of the mobile node and the client

The informative panel displays the numerical value of the 2-

dimensional coordinates of the mobile node estimate locally by

the running MAT algorithm. It also shows the ID of the mobile

node and the number of steps performed by the mobile node

that has been notified to the client. Pressing the

JToggleButton Trace Path the tracing option can be

enabled/disabled.

The constructor of the frame Teseo() is the first method

automatically called by the Java virtual machine, therefore it is

used to initialize the form. The init is divided into a design side,

which instantiates the Swing and AWT palette of the frame via

the method initComponents(), and a source side, which is

related to the method initMyComponents(). The source side

resets the estimation, allocates and initializes the variables and

objects to it in charge, and completes the instantiation of a set

of elements of the frame:

 VSI update.

The Verbose System Information is displayed. This is

a JTextArea within a JScrollPane, placed in a

JDialog external to the frame, which acts as output

both to report any anomalies in the use of the client,

as the occurrence of some Exception, and to tell the

user information about the client, such as setting

parameters intrinsic to it. The VSI can be

hidden/shown through the option Settings ! View of

the menu. Fig. 11 gives an example of a VSI

information flow;

Fig. 11 screenshot of the VSI during the use of Teseo client

 Init of client-node communication.

It is set to serial the type of packet source, and it is

chosen a default serial port, the USB0 (/dev/ttyUSB0)

with its baud rate, which is 115200 baud for the

Tmote Sky. The resulting COM port is labeled with

the syntax serial@/dev/ttyUSB0:tmote.

 Init of tracing settings.

Time values Tu and ¿u / AUDIT_TIME are set to

Tu =360 ms and ¿u =1200 ms. These values,

editable by the menu Settings ! Trace, pose some

temporal constraints on the visualization of the

trajectory of the mobile node in the MapPanel.

 Init of channel parameters.

It is instantiated the transmission channel defined by

the class Channel, setting the ¯ and ° parameters

with two default values that are merely suggestive:

¯ = ¡39:7 dBm and° = 3:04. It is also set to

P tx
j = 0 dBm the transmission power of each node j

at the distance of 1 m.

 Init of the map.

It is Initialized the graphic environment in which the

mobile node is displayed, by invoking the method

initEnvironment(String) of the class MapPanel, that

receives as input parameters one of the maps stored in

the maps directory of the package teseo.

After the initialization phase, the frame remains in an idle

state, as long as the user not only connects the client to the

mobile node but also starts the node. Defining the input source

to the client, via the control panel, it is possible to start the

mobile node by pressing the Start button. Doing so, the

ActionEvent of the JButton calls the routine start(), which

establishes a connection with the mobile node, if it is not been

done before, by calling the method connect(String). This

method creates an object PhoenixSource to automate both the

reading and the dispatching of packages and the restarting of

the communication port. The PhoenixSource is coupled to an

object MoteIF which provides an interface Java at the

application level to receive messages from and send messages

to the Tmote Sky. At this point, the JFrame is registered as a

MessageListeners of the MoteIF for each of the types of

messages DataMsg, MoteCtrlMsg, PingClientMsg. If the

connection is successful, the command,START, is forwarded

to the mobile node using the function send(int, Message) of

object MoteIF.

The button relegated to the Stop of the mobile node behaves

similarly: at the pressure of the corresponding JButton, the

ActionEvent calls the routine stop(), which immediately

forwards the command STOP to the mobile node, after

verifying that Teseo is connected to it. Then, if the mobile node

is successfully stopped, the routine disconnects the client,

calling the method disconnect(String) which unregisters the

listeners of the messages and executes the shutdown() of the

PhoenixSource. From the moment the mobile node is no

longer in the state DO_NOTHING, the frame becomes

sensitive to receive messages transmitted via USB (serial) from

the mobile node. The message_t received are handled by the

synchronized method messageReceived(int, Message), which

performs certain operations depending on the type of the

received message. If it is a PingClientMsg and if it is the first

one of this type that the client has received, the frame:

 gains knowledge of the ID of the mobile node with

whom the client is connected and it stores its frequency

and transmission power;

 synchronizes itself with the mobile node. To do this it is

instantiated a Timer, which schedules the execution of

a EstimateTimerTask at a fixed rate ofTc =

AUDIT_TIME ms. EstimateTimerTask is a subclass of

the class TimerTask and it implements the interface

Runnable: when the AUDIT_TIME ms are passed, the

method run() of TimerEstimate is invoked, which calls

the method estimate2D() of class Estimation, global

variable of the frame.

Then the method ends by updating the counter of the steps

performed by the mobile node and, if at least one DataMsg is

not yet arrived, it resets the HashMap<Integer, Node> of the

MapPanel class, related to the fixed nodes that formed the

group of nodes used by the mobile node in the previous

estimate. If it is a DataMsg and if it is the first one of this type

that the client has received since the last position estimation

executed, the frame resets the HashMap<Integer, Node> of

the MapPanel. Then, if the fixed node to which the DataMsg

belongs is present in the map, it is added, with his ID, to the

HashMap<Integer, Node> of the MapPanel and its

coordinates are added into the Vector<Coordinate2D> of the

Estimate together with the measure of the RSS that is put in

column of the Vector<Integer> of the class Estimate. The

method messageReceived int, Message), as mentioned,

continues to discriminate messages for Tc ms, and then

decreed the beginning of the process of mobile node position

estimation, assigned to the class Estimate. Before the timer

expires, the client must be able to form the set of fixed nodes

assigned to the current step, assuming that the mobile node is

inside a communication range that allows him to communicate

with a non-empty group of fixed nodes, in order to allow the

MAT algorithm to make an estimate that is not the simple

evolution of the state of an open-loop system. For a deeper

understanding of the functioning of the client will now be

outlined, one by one, the classes Channel, Estimate,

MapPanel, VariantExtendedKalmanFilter that are those

that most characterize the MAT algorithm.

A. Channel

This class implements the channel model presented in Sec. 2.

The constructor requests to set the transmission power P tx
j of

all fixed nodes, the attenuation ¯ of the channel and the loss

factor ° . Method getPower(double) returns the value of power

Pij, i.e. the power of the mobile node i function of the

distance from the fixed nodej. The R2 distance between two

nodes is given by the method get2Dnorm(double, double,

double, double). Essential to compute the estimation is the

method getDerivativesPower(double, double, double), that

returns the elements of (6).

B. VariantExtendedKalmanFilter

This class hold the model and dynamic of the EKF,

implementing Alg. 1. It uses the JAMA (JAva MAtrix package)

library [22], version 1.0.2, a linear algebra package that

provides user-level classes for constructing and manipulating

real, dense matrices. The constructor of the class builds matrix

A of the state model, method setInitialCondition() fixes the

initial conditions, as they has been defined in Sec. 3. Instead,

method update(double[][], double[][], Channel) is designed

to implement Alg. 1.

C. Estimate

This class is focused on the synchronized method

estimation2D(), which is divided into the following sequential

operations:

 copy in different arrays the values stored by the vectors

Vector<Coordinate2D> and Vector<Integer>, which

are passed to method update(double[][], double[][],

Channel) of VariantExtendedKalmanFilter2D.

Vector<Integer> stores the measures of RSS made by

the mobile node in reception of DataMsg messages

from fixed nodes, while Vector<Coordinate2D> stores

the corresponding R2 positions of the fixed nodes;

 execution of the update routine own by the class

VariantExtendedKalmanFilter2D. This routine, core

of the MAT algorithm, returns, in a period of 1 ms

circa, the estimation of the R2 position of the mobile

node. This values is then stored in a global

Coordinate2D variable of Estimation class;

 management of mobile node position. It is saved in the

object Node of MapPanel; then it is added both to

Vector<Node>, that collects all the estimated positions

that has to be logged, and to Vector<Node> of tracing

option, under some constraints given by the delay ¿u

and the sampling time Tu. Moreover, some variable are

reset and the estimate2D() method terminates clearing

vectors Vector<Coordinate2D> and Vector<Integer>

and notifying to the frame that the estimation process is

finished.

At this point the JFrame is ready to wait a new

PingClientMsg message, to be followed by other DataMsg

message used to produce a new estimate of the position of the

mobile node.

D. MapPanel

MapPanel is a sub class of the JPanel which aim is to

coordinate the visualization of the graphical environment of the

map. Teseo holds a global instance of MapPanel, initialized

invoking the routine initEnvironment(String). The first activity

of the MapPanel is to upload both the image file of the default

map and the locations of fixed nodes, deployed in advance

within the various locations on the map. To simplify this

configuration step it has been implemented a parser that reads

the settings directly from text configuration files identified by

the extension .map. The parsing is performed by the method

parseMapFile(String) which is passed as a parameter the name

of the configuration file, contained in the subdirectory /maps of

package teseo. The successful completion of parsing operation

depends on the following rules:

 first line of the file has to contain the name of image file

of the map. This file has .jpg extension, and its

dimension must be equal to 640x480 pixels;

 second line has to point the position of the origin of the

2-dimensional referral system, used to measure the

position of the nodes in the environment. The unit of

the origin should be in pixels;

 third line has to indicate the length in meters of a screen

pixel. This is an essential factor of scale in order to

display properly the position of the nodes (fixed or

mobile) in the GUI;

 following lines have to list the details of each fixed

node. The details are the ID, the abscissa, the ordinate

and the z-axis of the nodes. The values are separated by

a comma and the unit of the coordinates is in meters.

Lines of /maps file are progressively enumerated, excluding

empty lines and comments. The file scan is performed using a

simple text scanner of the Java standard library which can parse

primitive data types and strings using regular expressions. A

Scanner separates the input into various tokens distinguished

by a delimiter pattern, which by default is the whitespace

character. Nodes are saved in a HashMap<Integer, Node>.

Indexing is performed using as key the node IDs, which are

intrinsically unique. If necessary, to access the contents of the

entire map HashMap<Integer, Node>, it is possible to use an

Iterator on the Set of the keys. This set is accessible in one

step through the method keySet() of the class Map<Integer,

Node>. After the completion of the parsing, the method

loadImage(String) loads the icons associated to the mobile

node, the fixed nodes and the virtual origin of the axes. The

mobile node is marked by a green rectangle, while the fixed

nodes, at each k step of the MAT algorithm, are blue or red

rectangle. The color of the fixed nodes depends on whether or

not the nodes belongs to the set chosen by the mobile node to

estimate the position in the time interval[(k¡1)Tc kTc]. If a

fixed node is selected it turns to blue, hence it is red colored.

The origin of the reference system, whose display is optional, is

an olive green viewfinder. Assuming that the loading of some

images is not successful, it is expected to replace the images

with a rectangle of the class Graphics. The last action of the

initialization, afterwards creating Vector<Node> of the Trace

Path functionality, it is the start of the refreshing Thread of

the JPanel, whom sampling time is given by the constant

REFRESH_TIME. The refresh repeatedly calls the method

repaint() which in turn invokes paintComponent(Graphics).

This one draws the map and the origin; the fixed nodes,

iterating drawAnchorNode(Node, Graphics, boolean), if it is

checked the JCheckBoxMenuItem Beacons; the mobile node,

drawMobileNode(Graphics); the trace of the path of the

mobile node, if requested, obtained with a linear interpolation

of the positions. Lines are drawn with the method

drawThickLine(Graphics, int, int, int, int, int, Color). The

positions are taken in chronological order from a

Vector<Node> thanks to an iteration on a Enumeration of

the elements of the vector. Furthermore, starting from a certain

length of track, more than MIN_TRACE_SIZE, the history of

the trace begins to be erased, giving to the path a snake effect.

VII. SIMULATIONS WITH EXPERIMENTAL SETUP

To validate the algorithm described in Sec. 3 simulations

have been performed on the base of the network data derived

from the WSAN installed in the Department of Information

Engineering (DEI) of the University of Padova [5]; the testbed

considered (a portion of the mentioned WSAN) is depicted in

Fig. 12 and comprises 12 Tmote Sky [10] whose Chipcon

CC2420 radio has an accuracy of 6 dBm.

Here, the agents have a distance of about 4 meters from

each other on an almost regular triangular grid of 15£10 m2.

This testbed is partially unstructured with laboratory/office

furniture and equipment, and three partition walls separate two

rooms with an hallway. The agents communicate only through

the wireless channel and. Access points are also present in the

environment, hence the testbed is subject to a reasonable level

of interference and electromagnetic noise.

Fig. 12 architecture of the testbed, covering an area of about 150 m2.

The agents communicate only through the wireless channel

All Tmote Sky agents, in groups of up to four elements, are

connected via USB (serial) hubs that provide power supply and

allow to collect log data for debugging intents. The agents are

also connected to embedded computers that act as gateways.

These mini PCs are processing units which interact with the

programming of the agents and they are connected via Ethernet

to a central server from which to monitor, manage and check

the entire WSN.

For the estimation of the channel parameters ¯ , ° in (3) the

least-square method in [19], which is a distributed version of

[20], has been adopted. The results (° = 2:04, ¯ = ¡41:69

dBm, ¾2 = 7:57 m2) provide the model in Fig. 13.

Fig. 13 power modelP = ¯ ¡ ° log10 d, as function of distance d .

Notice that the plot is limited to distances below 15 meters, since it is

not worth to consider larger intervals

The packet loss probability in Fig. 14, equal for each agent, is

obtained as a least-square interpolation of experimental data

collected in the testbed of DEI.

Fig. 14 packet loss probability. The red dots are samples computed on

experimental data; the blue line is their least-square interpolation

The movement of an agent is simulated through a random

walk model

»(k+1) =

2

6
6
4

1 0:1 0 0

0 1 0 0

0 0 1 0:1

0 0 0 1

3

7
7
5 »(k) +w(k)

Ã(k) =

·
1 0 0 0

0 0 1 0

¸

»(k) + v(k)

where, »3(0)»U [0;10], »2(0) = »4(0) = 0 and the

variances of model and measure noise w(k) and v(k) are

respectively given by:

 Q=9:4

2

6
6
4

0:01 0:1 0 0

0:1 1 0 0

0 0 0:01 0:1

0 0 0:1 1

3

7
7
5 R=0:0315

·
1 0

0 1

¸

:

A. Performance evaluation

In general, the performances of any tracking algorithm

depend on different factors, such as density and connectivity of

the beacons, computation and communication costs, fault

tolerance and robustness. In Fig. 15, the position estimation

error jjb» ¡ »jj2 is plotted for different algorithm parameters,

as a criteria to evaluate the goodness of the tracking algorithm.

Interestingly, the value of C (maximum number of RSS data

that each agent collects from neighbors to average the received

power), over a certain threshold, does not affect significantly

the position estimate, while the promptness of the system slows

down increasing C . The system behaves similarly as for the

bound on the received power, and increasing RSSbound (the

minimum power level acceptable for node-to-node distance

estimation) would lower the number of useful signals in the

localization process. Finally, increasing the measurement noise

variance ¾2
v, worsen the performance, as expected.

Fig. 15 Estimation errors for different simulation parameters

If the extended version of the EKF has become necessary to

deal with the non-linearity of the system, the use of an

Unscented Kalman Filter (UKF) or a Sequential Monte Carlo

(SMC) method has not be considered since these two

approaches are proven to not improve significantly the

performance in terms of localization accuracy. In fact, the

SMC, which is in general a better solution than a UKF [23],

tends to outperform the Kalman as the localization errors

increase and it cannot considerably filter the non-Gaussian

components.

VIII. CONCLUSION

In this work, an application for multi-agent tracking in wireless

networks, with emphasis on the software design and the code

implementation, is presented. The application employs a RF-

channel model to estimate the distance among agents belonging

to the WSAN. To mitigate the nuisances induced by the not

perfect wireless communication, by the implementation in an

unknown and unstructured environment, and by the presence

of noisy measurements, an EKF is designed to provide

corrected estimates of the mobile agent positions. Moreover,

attention has been posed on the timings among the events

occurring within the agent and the synchronization with the

other peers of the network, to ensure the correct sequence and

completion of the tracking procedure. Simulations and

experiments on a real testbed validate the goodness of the

approach and assess it is suitable for a real time implementation

on embedded devices.

ACKNOWLEDGMENT

The authors gratefully acknowledge Eng. Fabio Maran for

his support to develop the simulation environment and

Massimo Marra to collect the experimental data.

REFERENCES

[1] K. Romer, F. Mattern, “The design space of wireless sensor networks”,

IEEE Wireless Communications, vol. 11, no. 6, 2004, pp. 54–61.

[2] L. M. Oliveira, J. J. Rodrigues, “Wireless sensor networks: a survey on

environmental monitoring”, Journal of Communications, vol. 6, no. 2,

2011, pp. 143–151.

[3] Z. Bojkovic, B. Bakmaz, “A survey on wireless sensor networks

deployment”, WSEAS Transactions on Communications, vol. 7, no. 12,

2008, pp. 1172–1181.

[4] S. M. Torabi, M. A. Samadian, “Covering of problem in wireless sensor

networks”, WSEAS Int. Conf. on Telecommunications and informatics

(TELEINFO09), pp. 88-94

[5] P. Casari, A. Castellani, A. Cenedese, C. Lora, M. Rossi, L. Schenato,

M. Zorzi, “The wireless sensor networks for city-wide ambient

intelligence (WISE-WAI) project”, Sensors, vol. 9, 2009, pp. 4056–4082.

[6] A. Deshpande, C. Guestrin, S. R. Madden, “Resource-aware wireless

sensor-actuator networks”, IEEE Data Engineering, ch. 28.

[7] V. Gupta, R. Pandey, “Data fusion and topology control in wireless

sensor networks”, WSEAS Transactions on Signal Processing, vol. 4, no.

4, 2008, pp. 150–172.

[8] M. Hefeeda, M. Bagheri, “Forest fire modeling and early detection using

wireless sensor networks”, Ad Hoc & Sensor Wireless Networks, vol. 7,

no. 3-4, 2009, pp. 169–224.

[9] A. Cenedese, G. Ortolan, M. Bertinato, “Low density wireless sensors

networks for localization and tracking in critical environments”, IEEE

Transactions on Vehicular Technology, vol. 59, 2010, pp. 2951–2962.

[10] Moteiv, Tmotesky. (2006, May 10). [Online]. Available:

www.snm.ethz.ch/Projects/TmoteSky.

[11] P. Lewis, Tinyos programming, Oct. 2006.

[12] D. Gay, P. Lewis, R. von Behren, et al., “The NesC language: a holistic

approach to network embedded systems”, PLDI, 2003.

[13] F. Zanella, Teseo. (2006) [Online]. Available:

sourceforge.net/projects/teseus.

[14] I. Amundson, X. D. Koutsoukos, “A survey on localization for mobile

wireless sensor networks”, Int. Conf. on mobile entity localization and

tracking in GPS-less environments, 2009, pp. 235–254.

[15] K. Lorincz, M. Welsh, “MoteTrack: a robust, decentralized approach to

RF-based location tracking”, Personal and Ubiquitous Computing, vol.

11, no. 6, 2006, pp. 489–503.

[16] N. Patwari, Location estimation in sensor networks, Ph.D. thesis,

University of Michigan, 2005.

[17] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear

Approaches, 1st Edition, Wiley-Interscience, 2006.

[18] W. Su, M. Alzaghal “Wireless sensor network: channel propagation

measurements and comparison with simulation”, WSEAS Int. Conf. on

Computers (ICCOMP07), 2007, pp. 208–213.

[19] A. Cenedese, F. Zanella, “Channel model identification in wireless

sensor networks using a fully distributed consensus algorithm”,

University of Padova, 2012, technical report.

[20] S. Bolognani, S. Del Favero, L. Schenato, D. Varagnolo, “Consensus-

based distributed sensor calibration and least-square parameter

identification in WSNs”, Int. Journal of Robust and Nonlinear Control,

vol. 20, no. 2, 2010, pp. 176–193.

[21] A. Boukerche, H. Oliveira, E. Nakamura, A. Loureiro, “Localization

systems for wireless sensor networks”, IEEE Wireless Communications,

vol. 14, no. 6, 2007, pp. 6 –12.

[22] J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. M. R. Pozo, K.

Remington, Jama - java matrix package (2005). [Online]. Available:

http://math.nist.gov/javanumerics/jama.

[23] K.-C. Lee, A. Oka, E. Pollakis, L. Lampe, “A comparison between

unscented kalman filtering and particle filtering for rssi-based tracking”,

Workshop on Positioning Navigation and Communication (WPNC),

2010, pp. 157-163.

Filippo Zanella was born in Valdobbiadene (Treviso,

Italy) in 1983. He received his B.S. degree and M.S.

degree in Automation Engineering from the University

of Padova, Padova, Italy, in 2005 and 2008

respectively.

His research interests are in the areas of wireless

cameras/sensors networks and mobile networks with

emphasis on distributed control, estimation and

optimization.

He is currently a Ph.D. Candidate at the Department of Information

Engineering at the University of Padova. He has been a Visiting Student

Researcher at UC Berkeley in 2011 and at UC Santa Barbara in 2012. Dr.

Zanella is Member of IEEE since 2006 and he has been Staff Member of the

IEEE Student Branch of the University of Padova from 2006 to 2008.

Angelo Cenedese was born in Treviso (Italy) in

1972. He received the Laurea degree in 1999 and the

Ph.D. degree in 2004, both from the University of

Padova, Padova, Italy.

His research interests are in the fields of modeling,

control theory and its applications, active vision,

sensor and actuator networks, with particular

attention to environmental monitoring and control,

and camera networks.

He is currently an Assistant Professor with the Department of Information

Engineering, University of Padova. He has been involved in European Union

projects on control and diagnostics of nuclear fusion devices, on methodologies

for adaptive optics systems, and on estimation and control problems in

distributed networked systems. He has coauthored around 70 papers.

http://www.snm.ethz.ch/Projects/TmoteSky
http://sourceforge.net/projects/teseus
http://math.nist.gov/javanumerics/jama

