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Abstract—In this work the design and implementation of an 

application to track multiple agents in a indoor Wireless Sensor Actor 

Network (WSAN) is proposed. We developed a tracking algorithm 

that falls into the category of the radio frequency localization/tracking 

methods, that exploit the strength of the wireless communications 

among fixed and mobile agents to establish the position of the mobile 

ones. The algorithm resorts to an Extended Kalman Filter to process 

the agents measurements and reach a desired level of tracking 

performance. The tracking application, namely Teseo, is composed by 

a low-level NesC management software for the agents side and a Java 

graphical interface provided to users connected to mobile agents. A 

detailed description of the operations performed by Teseo is given, 

accompanied both by simulations to validate the tracking algorithm 

and experiments on a real testbed to test Teseo. 

 

Keywords—Wireless sensor network, tracking, localization, 

Kalman filter, embedded systems, TinyOS, NesC 

I. INTRODUCTION 

N recent years, the employment of Wireless Sensor Actor 

Networks (WSANs) to gather data from the environment 

have been increasingly envisaged for building management 

systems and environment control [1], [2], thanks to their 

versatility of use, easiness of deployment, pervasiveness of 

data, adaptability to system/environment variations [3], [4], 

[5]. Examples in this sense are given by Heating and 

Ventilation Air Conditioning (HVAC) systems [6] employing 

more and more advanced control techniques that would benefit 

from a detailed mapping of the internal building parameters; by 

event detection and surveillance systems, where the 

heterogeneity of agent devices and the computational grid 

created by the network itself allow the definition of data fusion 

policies [7], [8]; by localization and tracking systems where the 

wireless devices can exploit the received power signal during 

broadcast/peer-to-peer communication to perform position 

estimation [9]. 

The growing interested for the WSANs has been supported 

by the diffusion of small and cheap devices, capable of radio 

frequency (RF) communication, computation, and memory, 

although of limited resources. An example in this sense is the 

Tmote Sky [10], an ultra low power IEEE 802.15.4 compliant 

wireless device, which has become a reference in the academia 
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for the early development of algorithms and applications for 

WSANs. These devices are based on the TinyOS operative 

system [11] and are programmed in NesC [12], a C-derived 

language specifically developed for embedded systems. 

A. Contribution 

The work presented in this paper belongs to framework of 

the RF-based localization and tracking, and in particular to the 

multi-agent tracking problem, where a set of mobile devices 

(i.e. mobile nodes) are moving within a network of fixed (and 

known) position similar devices (i.e. fixed nodes), with which 

they communicate through a RF channel exchanging 

information on the surrounding. 

In this paper we introduce an easy to implement and fast 

responsive Extended Kalman Filter (EKF) approach for the 

RF-based localization and tracking, and we describe the 

implementation stages of Teseo application we developed, 

which is a combination of NesC and Java software. We show 

how the implementation in this framework is particularly 

challenging since the tracking procedure requires correct 

communication, scheduling, and synchronization among the 

devices to work properly and attain the expected performance. 

Moreover, the limited resources available to the embedded 

devices calls for efficient coding solutions, both in terms of 

memory and computational power. The code is available freely 

as open-source on Sourceforge [13], distributed under the 

GNU General Public License, Version 3, 29th June 2007, 

whom copyrights are owned by the Free Software Foundation. 

B. State of the art 

In the framework of distributed systems composed of not-

expensive embedded devices, one immediate advantage of RF-

based tracking with respect to other methodologies is that the 

former does not need additional hardware components such as 

ultrasound, infrared, or light modules, to generate the 

localization signal that is then measured to compute the angle 

of arrival, the time of arrival, or time difference of arrival [14]. 

Differently, the RF-based method parasitically exploits the 

communication flow that is anyway ongoing among the nodes, 

and the measurement techniques is relying on the Radio Signal 

Strength (RSS) either basically inverting the relation between 

the distance and the received power (radio-channel model), or 

matching the received power with a pre-compiled map of the 

environment linking power values to positions. Common 

references for the former range-based methods and the latter 

range-free methods are respectively [15] and [16]. 
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In this context, it appears how the accuracy in the 

localization/tracking strongly depends on the quality of the 

specific embedded hardware devices and how the algorithmic 

solutions aim at providing software correction procedure to 

improve the basic performance of the system. 

In particular, a solution is sought that, whereas guaranteeing 

a certain level of tracking accuracy, is easy to implement, does 

not require high resources to the embedded device, is robust to 

failures, and quick enough to converge for real-time use. 

C. Paper organization 

Sec. 2 introduces the channel model adopted by the tracking 

algorithm, while in Sec. 3 we describe our proposed algorithm 

for determining mobile nodes positions through an EKF [17] 

approach. Sec. 4 briefly explains the interactions between the 

agents and the client, Sec. 5 and Sec. 6 are dedicated to the 

explanation of the design of Teseo both for the NesC and Java 

coding. Sec. 7 contains simulations of the core algorithm based 

on an exemplary WSAN configuration. Sec. 8 concludes. 

In general, we will use bold fonts to indicate vectorial 

quantities, plain italic fonts to indicate scalar ones, capital 

vertical fonts to indicate matrices. 

II. CHANNEL MODELING 

The performances of tracking algorithms are influenced by 

the effects of noises and disturbances introduced into the 

communication channel, so it is necessary to identify these 

contributions as accurately as possible [18]. The measurements 

of received power exchanged by agents in a Wireless Sensor 

Actor Network (WSAN) are affected by objects in the 

environment (such as walls or furniture) that cause attenuation, 

reflection, diffraction and diffusion effects. Moreover, errors 

that vary over time are caused by generic noises and 

interferences. Based on these considerations, we present a 

general channel model which takes into account different kind 

of disturbances. Then we focus on a reduced channel model, 

subject to particular assumptions, that we employ to design the 

multi-agent tracking algorithm. 

A. General model 

As we previously stated, to model the channel in an indoor 

environment it is necessary to consider different factors: the 

free-space path loss, that expresses the power loss due to 

dissipation of energy in the channel, the fading phenomena, like 

shadowing and multi-path, that express the variability of the 

channel. 

A WSAN is usually treated as a graph G = (N ;E), where 

the set N  of the nodes (i.e. agents) communicate along the 

edges (i.e. communication links) specified by the set E. Given a 

node i, the set V(i) := fj j(i; j) 2E; i 6= jg collects its 

neighbors. 

In our context the WSAN is primarily composed of a set F  

of F  nodes in fixed positions, that do not know a priori their 

neighbors V(i), i= 1; : : : ; F , but instead they know their 

positions zi := (xi; yi), in the 2-dimensional space. 

A well agreed channel model is the log-distance path loss 

model [19], where the received power is linked to the 

transmission power through a log-normal model of path loss, 

and other contribution terms are added to take into account of 

the other disturbing effects. The model that describes the 

wireless channel between two nodes, in terms of received 

power Pij, is the following [20]:  

 

Pij := P tx
j + rj + fpl(dij) + fsf (zi;zj)

+ fa(zi;zj) + vff (t) + oi;  (1) 

where i and j are the receiver and transmitter node, at a 

distance dij := kzi¡zjk (k ¢ k being the classical Euclidean 

norm). Moreover, P tx
j  is the transmitted power, rj is the 

transmission offset between the nominal and the effectively 

transmitted power (which is usually reported in the datasheet 

of the devices); fpl(¢) represents the path loss; fa(¢) 

represents the channel asymmetry factor; fsf(¢) models the 

slow fading components while the vff(¢) represents the fast 

ones, and oi(¢) represents the measured received strength 

offset of the receiving node. 

A. Simplified model 

The parameters of (1) depend on the environment where the 

WSAN is deployed and the specific hardware of the wireless 

devices. In general, to perform a channel parameter 

identification, the model of (1) is simplified assuming that the 

transmission power of the sensors is set at the maximum level 

(i.e. P tx
j = 0 dBm, 8j 2N ) so that the transmitter offset is 

almost zero, rj »= 0 dBm. Furthermore, we consider that 

oi = 0, 8i 2 N , since the offsets can be easily compensated 

exploiting a distributed strategy
1
 [20]. 

Lastly, the fast fading effect vff(t) is removed, by averaging 

the received power over a set of 0 < Cij · C  consecutive 

measures: P ij :=
PCij

k=1 P
k
ij. 

It follows that the average received power P ij becomes: 

 Pij = ¯¡10° log10(dij)+fsf(zi;zj)+fa(zi;zj): (2) 

Since the components of slow fading and channel asymmetry 

are independent Gaussian random variables of variance ¾2
sf  

and ¾2
a respectively, they can be combined into one zero-mean 

random variable qij with variance equal to ¾2 = ¾2
a +¾2

sf: 

 Pij = ¯¡10° log10(dij)+ qij: (3) 

 
1 Experimental evidence indicates that agent offsets o i are not negligible 

and can be substantially large for some nodes (up to 6 dBm). The effect of this 

offset is to bias the estimate of the distance between two nodes, which is 

particularly harmful in tracking applications. 



 

 

From (3) it is clear that ¯  and °  are the only parameters that 

determine the model of the communication channel. Being the 

components of slow fading and channel asymmetry 

independent Gaussian random variables, we can use a 

(distributed) least-squares estimator to estimate those 

parameters, as it has been addressed in [19]. 

III. TRACKING ALGORITHM 

In this section we describe our proposed algorithm for 

determining mobile nodes positions. 

Suppose that in the WSAN a set M of M  mobile nodes can 

freely move. Thus the WSAN is overall constituted by F +M 

agents, in the setN =F ©M. 

The proposed algorithm, that allows to estimate the 2-

dimensional position of a mobile node is based on the 

assumptions that, at each time step k , k 2 Z each mobile node 

m, m 2M, knows: 

 the coordinates zn of each fixed node n 2 F ; 

 the average power Pmn received from each 

n2Vk(m) fixed node over a period of 

time[(k¡1) k], where Vk(m) is the set of the Fk 

neighbors of node m in the period [(k¡1) k] 

(notice that Fk · dim(F) changes at each time 

step k); 

 the channel parameters ¯  and ° ; 

Aim of the algorithm is the disjoint estimation of the 

coordinates »m(k) := (xm(k); ym(k)) 2R2 of the mobile 

nodes, at each time step k .  

A. State-space model 

Define the quantities 
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and 
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For each mobile node m we have the state model: 

 »m(k+1) =A»m(k)+w(k) = »m(k)+w(k) (4) 

and the measurements model: 

 Ã(k) = h(»m(k);Z(k))+v(k) (5) 

where Z(k) is the matrix of known positions zni, with 

i= 1; : : : ;Fk of the fixed nodes and »m(k) is the state of the 

system, i.e. the 2-dimensional position of each mobile node 

m 2M; Ã(k) is the output of the system, made of Fk 

powers stored by the mobile node and available at the time k . 

The process noise w(k) and the measurement noise v(k) are 

uncorrelated, white, with zero mean and variance W2R2£2 

and V(k) 2RFk£Fk, respectively. 

As we can see, the state transition model is linear and the 

matrix A is the identity matrices, denoting a typical behavior of 

a simple random walk. Thus the mobile node is represented as 

a point mass moving on the 2-dimensional plane, surrounded 

by a cloud of Gaussian uncertainty. 

The model of the measures is rather constituted by the 

channel model (3), which is non-linear. Notice how the 

measurement model is time variant, i.e. its dimension varies at 

each time step k  according to the number Fk of the collected 

power measurements. Specifically, at each time step k  a mobile 

node m collects Fk averaged measurements Pmni
(k) from its 

dynamic neighbors ni 2 Vk(m), i= 1; : : : ;Fk.  

B. Structure of the algorithm 

Assume without loss of generality that dim(M) = 1. We 

define »(k) := »m(k) to indicate the position of the only 

mobile node m 2M. The idea behind the algorithm is to 

operate two different types of filtering depending on the 

number Fk. If Fk < 3 the mobile node updates its state 

following an open-loop approach, otherwise it uses an EKF 

technique. 

The choice of two approaches derives from the fact that we 

want to provide the EKF a minimum number of measures to 

update the estimate b»(kjk). That minimum has been arbitrarily 

set equal to 3, recalling somewhat the constraint that appears 

in the algorithms based on trilateration/triangulation methods. 

If the measures available in the various sampling instants are 

less than 3, the algorithm expects to leave the filter in an open 

loop. The mobile node continues to regard as an estimate of 

the current position the last estimated position based on 

measurements received, but increasing step by step the 

variance of the filtering error. This approach forces the filter to 

consider the mobile node still in the same position both if there 

is packet loss (or the mobile node is simply in a dead zone) and 

if the acquired measurements are somehow corrupted. 

Now let's see in detail the two types of filtering presented. 

Every period [(k¡1) k] the mobile node m identifies the set 

Vk(m), i.e. the Fk neighboring nodes, based on the 

measurements that it has collected in that time interval. 

If Fk ¸ 3 the function h(¢) is linearized near the point 

b»(kjk ¡ 1), which is the best estimation of the mobile node 

state at the instant k . Then the Jacobian: 

 H(k) =

·
dh(»; ¢)

d»

¸¯
¯
¯
¯
»=»

2 RFk£2 (6) 

is computed, which yields  
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Then, the minimum variance linear estimator b»(kjk) of the 

state »(k), based on the observations Ã(k), is computed 

through the recursive algorithm: 

 

¤(k)=H(k)Q(kjk¡1)H(k)T +V(k)

L(k)=Q(kjk¡1)H(k)T ¤(t)¡1

Q(kjk)=Q(kjk¡1)¡Q(kjk¡1)H(k)T ¤¡1 H(k)Q(kjk¡1) 

where the minimum variance linear predictor b»(k + 1jk) is 

given by 

 

b»(k+1jk) = Ab»(kjk) = b»(kjk)

Q(k+1jk) = AQ(kjk¡1)AT +W= Q(kjk) +W 

with ¤(k) variance of the innovation process 

e(k) = Ã(k)¡ H(k)b»(kjk ¡ 1) and L(k) gain of the filter. 

If Fk < 3 we have: 

 

b»(kjk) = b»(kjk¡1) b»(k+1jk) = b»(kjk)

Q(kjk) = Q(kjk¡1) Q(k+1jk) = Q(kjk) +W 

that jointly become: 

 

b»(k+1jk) = b»(kjk¡1)

Q(k+1jk) = Q(kjk¡1) +W 

outlining clearly the effect of the stationary solution. 

The scheme of the algorithm is summarized by Alg. 1 in Fig. 1. 

The use of the EKF approach lies on the fact that it is easy to 

implement and it does not require significant computational 

resources, thanks to the structure of the filter itself and to the 

size of the system. The proposed variant EKF is intrinsically 

time-varying and it does not admit regime solutions, even if the 

system is stable, but nothing can be said regard observability 

(of the linearized system, because Fk is variable). Therefore, as 

it is well-known, there is no guarantee that the EKF converge. 

 

The initial conditions of the algorithm are defined as 

b»(0j ¡ 1) = ¹0 Q(0j ¡ 1) = Q0, with ¹0 =E[»(0)] and 

Q0 =varf»(0)g. Since these quantities are not known in 

advance, specific estimation techniques can be used to get a 

guess. Trilateration, bounding box or least-square methods are 

some of the simplest and most popular for estimating the initial 

position [21]. 

 

 

 
Fig. 1 scheme of the tracking algorithm for a generic mobile agent 

 

The use of the EKF requires knowledge of the standard 

deviation ¾w of model noise w(k) and standard deviation ¾v 

of measurement noise v(k). Regarding ¾w we opted for an 

empirical calibration. Assuming that the mobile node is 

anchored to a human user, its variance, at each [(k¡1) k], 
can be set equal to that associated to a typical human motion, 

and therefore to define the diagonal elements of W. If we 

considered the fastest man in the world, with a sampling time 

of 60 ms between two consecutive estimations, the variance 

model would correspond to 0:3844 m2, which can be thought 

as an upper bound to the variance. ¾v is usually available from 

the specific of sensing device with whom measurements are 

performed. Since, in this case, the measuring instrument is the 

communication channel, all the variances of the fading effects 

and asymmetry of the channel should be accurately evaluated. 

In Sec. 4 a practical example for a specific device is given. 

IV. SOFTWARE DESIGN 

A set of indexed mobile nodes M= fm1; : : : ;mMg µN 

moves within a network of indexed fixed nodes 

F = ff1; : : : ;fFg µN, each node running a TinyOS 

module and communicating via wireless, assuming the 

parameters of the radio channel as known [20]. 

Also, each mobile node is connected to a client (laptop) 

through a USB connection, with the client performing the 

multi-agent tracking (MAT) computation envisaged by the 

algorithm in Sec. 3 and implementing Java classes for the 

Graphical User Interface (GUI). 



 

 

When one (or more) mobile node mi starts the tracking 

process: 

1. every Ts ms mi alerts its client Cmi
 to be ready, sending 

via USB PCMmax pings every Tp ms; afterwards, mi 

sends via wireless PNMmax pings every Tn ms; 

2. as Cmi
 receives a ping from mi, it enables a timer that 

starts the MAT procedure every Tc ms; 

3. the set of fixed nodes ffig that gets in touch with mi 

starts to broadcast DMmax messages every Tt ms, for a 

period not exceeding Ts ms; 

4. mi stores one by one the messages received from the 

ffig, filtering them according to a predefined Receive 

Signal Strength (RSS) threshold (RSSbound), and 

forwards these messages to Cmi
; 

5. Cmi
 stores the messages and every Tc ms estimates the 

position of mi, showing it in a GUI. 

Fig. 2 outlines the schema of MAT scheduling, for a complete 

cycle of the algorithm of Ts = TIMER_STEP ms. It compares 

with the same time scale the operating modes of the fixed 

nodes, the mobile node and the client. Scheme of Fig. 2, 

although complete, is simplified, as it does not highlight the 

randomness linked to the execution of some events. However, 

it is significant for understanding the temporal evolution of the 

processes that constitute the main algorithm. 

The whole software can be divided into two main blocks, 

according to the programming language: NesC for the nodes 

and Java for the client. Since in the considered context the 

peer-to-peer behavior among nodes appears of major interest, 

it will be dealt more in detail in the remainder of the paper. 

V. IMPLEMENTATION: NESC FOR NODES 

Four message types are defined to exchange information 

among different devices Fig. 3: 

 mote_ctrl_msg, to start/stop the MAT process. A stop 

signal interrupts any communication in progress; vice 

versa, a start forces mobile nodes to begin a new cycle 

of the algorithm. This message is sent via USB from 

Cmi
 to mi; 

 ping_client_msg, to ping the clients. It is used by mi to 

inform Cmi
 that a MAT is ready to start and to send 

configuration settings. This message is sent via USB 

from mi to Cmi
; ping_node_msg, to ping fixed nodes. 

It is used by mi to ping the ffig in the communication 

ranges. This message is broadcast by mi via radio; 

 data_msg, to measure RSS values. When mi receives 

this message, it computes RSS and sends the 

information to Cmi, enabling the position estimate. This 

message is broadcast via radio by ffig to mi and via 

USB by mi to Cmi. 

 
Fig. 3 Messages exchange between devices. Red arrows indicate 

data_msg, purple arrow mote_ctrl_msg, green arrow ping_client_msg 

and blue arrows ping_node_msg. 

To avoid potential overlaps among tasks, commands or 

events related to various operation states of the nodes, nodes 

are treated as finite state machines, implying that the operations 

of different node states cannot interfere with each other. The 

feasible states of fixed nodes ffig are: 

 IDLE: inactivity; 

 TRANSMISSION: broadcasting data_msg; 

while mobile node mi is characterized by the states: 

 SEND_CLIENT: sending ping_client_msg; 

 SEND_NODE: sending ping_node_msg; 

 AUDIT_NODE: auditing data_msg; 

 DO_NOTHING: inactivity. 

In addition, mi is enabled/disabled by Cmi
 through the 

following commands: 

 START_MN: starts mobile node; 

 STOP_MN: stops mobile node. 



 

 

Figure 2 Scheduling of tasks, timers, and communication events of node and client devices during MAT 



 

 

A. Mobile node activity 

To understand through an example the function covered by 

each of the routine of module MobileNodeP, involved in the 

MAT algorithm, we simulate a normal operation of the mobile 

node during the tracking procedure. In the description of the 

source code will not be mentioned TinyOS modules of 

MobileNodeP: they are an integral part of the configuration file 

MobileNodeC whose purpose is to delineate both the 

programmer and the compiler how the various components are 

interconnected. 

B.1. Boot 

When a mobile node mi is turned on, the boot sequence 

commences. In the function booted() of interface Boot 

peripherals and environment are initialized, moving mi in the 

states DO_NOTHING and WAIT_CMD: mi waits to receive a 

START_MN command by client Cmi
. 

It is also enabled the user button of the mobile node to allow 

user to start, START_MN, or stop, STOP_MN, the mobile 

node regardless of the client. 

The transmission frequency is set to CHANNEL_RADIO by 

command setChannel(uint8_t) of CC2420Config interface. If 

the event syncDone(error_t) signals that the routine is 

terminated correctly then radio and serial communication are 

turned on. 

If all operations are carried out properly all the LEDs are 

switched on, otherwise it is sufficient that any one LED is off 

to indicate that there is a problem in the init. Notified events 

startDone(error_t) of CC2420 and RS232 peripherals, a call to 

setPower(message_t*, uint8_t) of CC2420Packet sets to 

POWER_RADIO the transmission power of ping_node_msg. 

After this operations, mobile node waits for a command 

from the client side. 

B.2. Clock Step 

When mi receives a START_MN from Cmi
, it starts the 

timer ClockStep that every Ts = TIMER_STEP ms launches 

the fired() event. With this instance, the MAT algorithm 

begins: mi moves to the SEND_CLIENT state, all packets 

counters are reset, and timer ClockSendPingClient starts. 

B.3. Clock Send Ping Client 

When Tp = TIMER_SEND_PING_CLIENT ms elapse, 

Cmi
 is repeatedly informed of the start of the MAT process, 

for a number of times equals to PCMmax = 

MAX_PING_CLIENT_MSG. This activity is performed by 

posting task sendPingClientMsg(), which forwards messages 

ping_client_msg to the serial port. Then mi moves to the 

SEND_NODE state, stops the timers related to 

ping_client_msg sending, and starts the timer 

ClockSendPingNode. 

B.4. Clock Send Ping Node 

When Tn = TIMER_SEND_PING_NODE ms are elapsed, 

task sendPingNodeMsg(), periodically posted by the timer, 

broadcasts PNMmax = MAX_PING_NODE_MSG messages 

of type ping_node_msg, specifying the identification number 

(ID) TOS_NODE_ID of the node mi and the settings of the 

selected transmission channel. When mi stops to ping fixed 

nodes ffig in range, it moves to the AUDIT_NODE states and 

stops the timer ClockSendPingClient. Then it waits to receive 

data_msg messages. 

B.5. Receive data_msg 

The fixed nodes ffig that receive at least one 

ping_node_msg respond to the mobile node mi sending their 

data_msg messages. From these messages mi extracts the 

values of RSSI, shifted by a RSSI_OFFSET offset, using the 

command getRssi(int8_t) of interface CC2420Packet. 

Messages with RSS greater than the threshold RSS_BOUND 

are stored in a FIFO queue, Queue<data_msg>, of size 

QUEUE_DATA_SIZE. 

Then, mi invokes task sendDataMsg(), which forwards to 

the serial port all the data_msg messages contained in the 

queue; this is done only if the queue has not already been 

emptied in a previous sending. mi remains in the 

AUDIT_NODE state until timer ClockStep fires again, 

hereupon the mobile node returns to the initial conditions, 

ready to begin a new cycle. Anytime, the user retains the ability 

of stopping the algorithm execution with the command 

STOP_MN. In this case all timers are stopped and mi enters 

the IDLE state. 

  

B. Fixed node activity 

Similarly to the previous subsection, to describe the 

implementation of module FixedNodeP, we simulate the 

normal operation of the routines involved in the MAT 

algorithm. 

B.1. Boot 

When one fixed node fi turns on, TinyOS starts the boot 

sequence. In the function booted() peripherals and environment 

are initialized, moving fi to the IDLE state, meaning that the 

fixed node fi waits to receive a ping_node_msg message from 

a mobile nodemi, via radio communication. 

The transmission frequency is set to CHANNEL_RADIO and 

if the event syncDone(error_t) signals that the synchronization 

has been completed correctly, the radio and serial 

communication are turned on. 

Notified event startDone(error_t), a call of 

setPower(message_t*, uint8_t) sets to POWER_RADIO the 

transmission power of data_msg messages. After this operation 

the fixed node is ready to receive messages from the network. 



 

 

B.2. Receive ping_node_msg 

When fi receives a first ping_node_msg from a mobile 

nodemi, identified by a unique ID[k], k 2 [1 PNMmax], it 

starts the timer TimeToSend that every Tt = 

TIMER_TRANSMISSION ms launches its event fired(). In this 

stage, before moving to the TRANSMISSION state, the node fi 

computes the maximum number of data_msg to be sent to the 

mobile nodemi, that is given by: 

 DMmax :=

¹
Ts ¡ Tn ID[k]

Tt

º

; 

where Ts and Tn are the times previously defined. This action 

is carried out in order to reduce network traffic. Indeed, in 

doing so, the fixed node fi stops the transmission of data_msg 

messages before the mobile node in range mi enters in the next 

step of the algorithm. The DMmax number is recalculated 

every time since it is proportional to the ID[k] of the first 

ping_node_msg received, that may change due to the packet 

loss phenomena affecting in general the wireless channel, and 

in particular the tracking applications [5]. This bound in the 

transmission of the data_msg message forces fi to move to the 

state IDLE after TtDMmax ms, here remaining unless it 

receives other ping_node_msg by some moving mi present in 

the environment. 

B.3. Clock Send Data Node 

When Tt ms elapse, the task sendDataMsg(), periodically 

posted by the timer, sends DMmax data_msg messages in 

broadcast, specifying the TOS_NODE_ID of the fixed node fi 

and leaving empty the fields reserved to the RSS values.  

As fi ends to transmit, it returns to the IDLE state and the 

timer TimeToSend is stopped; then fi waits for any other 

message sent by any mobile nodemi in range. 

VI. IMPLEMENTATION: JAVA FOR CLIENT 

The software client, named Teseo, has to accomplish the 

following two tasks: 

1. executing the MAT algorithm from the data transmitted 

by the mobile node, based on the network retrieved 

information; 

2. managing the output flow and the system setup phase 

by means of a friendly user interface. 

To provide the user with an intuitive interface a Java frame, 

instance of the class JFrame, has been designed. The package 

is made of the classes: 

 Teseo: main frame of the GUI, entry point of the 

client. It defines the following nested classes: 

 MapPanel: panel that displays the graphical 

elements present in the environment (e.g. 

fixed nodes, mobile node, planimetry); 

  EstimateTimerTask: task that executes the 

routines of class Estimation; 

 Estimation: object that collects all the 

methods and variables to compute the 

position estimation of the mobile node; 

 Constants: interface for shared constants; 

 DataMsg: just alike data_msg; 

 MoteCtrlMsg: just alike mote_ctrl_msg; 

 PingClientMsg: as ping_client_msg; 

 Channel: object to manage the transmission channel 

model and the characteristic parameters; 

 Node: object that defines a node as an entity made 

up of a set of 2-dimensional coordinates and an ID; 

 Coordinate2D: generic 2-dimensional coordinates; 

 VariantExtendedKalmanFilter2D: the EKF 

implementation for the 2-dimensional tracking case 

described in Sec. 4. 

The frame is depicted in figure Fig. 4, where there can be 

highlighted four basic elements: The menu bar, the command 

console, the graphical environment and the informative panel. 

 
Fig. 4 view of the GUI Teseo 

The menu bar is made up four items, shown in Fig. 5 

 
Fig. 5 menu bar of the frame 

Clicking on File ! Save a JFileChooser appears. It allows to 

save a text file that is a summary of the mobile node positions 

estimated by the EKF in the current run. The name of the file is 

formatted taking into account the current date and hour: 

Teseo_<dd_MM_yy-HHmm>.txt. From JMenu View it is 

possible to show/hide some elements of the frame, like the 

Verbose System Information (VSI) (linked to the 

JCheckBoxMenuItem VSI) and the fixed nodes distributed in 

the graphical environment (JCheckBoxMenuItem Beacons). 

Instead, JMenu Settings allows to set: 



 

 

 the parameters ¯  and °  of the transmission channel, 

through the JDialog of Fig. 6 callable by JMenuItem 

Channel. The parameters of the JDialog, as they 

appears in Fig. 6, are initialized in the method 

initMyComponents() of the frame;  

 
Fig. 6 Dialog window for the configuration of the channel 

 times Tu (/ K_T_U ms) and ¿u (/ K_TAU_U ms), 

that are respectively the refresh time of the GUI, i.e. the 

sampling time of the mobile node position visualization, 

and the delay with whom the trace of the path of the 

mobile node starts to be plotted (the delay corresponds 

to the ¿u ms after the reception of the first 

PingClientMsg). Both values can be chosen by the 

scrollable bars of the dialog windows associated to the 

JMenuItem Trace. Values assigned to ¿u and Tu of 

JDialog in Fig. 7 cames from the default initialization 

brought by initMyComponents() method. 

 
Fig. 7 dialog window of the trajectory settings Tu and ¿u 

The graphical environment is a MapPanel, extension of the 

class JPanel, that collects a set of methods to show the 

movement in R2 of the mobile node in the surrounding 

environment. It consists of the layout of the building in which 

are positioned the nodes and of a set of icons useful to point 

the positions of the fixed nodes and the different positions of 

the mobile node. In Fig. 8 is given an example of the 

MapPanel during a MAT process of a single mobile node. 

 

The command console of Fig. 9 allows to interact with the 

mobile node, specifying the virtual serial port of the client to 

which the mobile node is connected. Buttons Start and Stop are 

used to start/stop the communication between frame and 

mobile node.  

 
Fig. 9 consolle di comando del frame 

 
Fig. 8 graphical environment of the frame. The red squares are the 

active fixed nodes at that time, the blue squares are the inactive fixed 

nodes, the green square is the mobile node and the red path is the 

trajectory of the mobile node 

In Fig. 10 there are shown the flow charts of the routines 

start() and stop(). 

 
Fig. 10 Flowchart of the start/stop of the mobile node and the client 

The informative panel displays the numerical value of the 2-

dimensional coordinates of the mobile node estimate locally by 

the running MAT algorithm. It also shows the ID of the mobile 

node and the number of steps performed by the mobile node 

that has been notified to the client. Pressing the 

JToggleButton Trace Path the tracing option can be 

enabled/disabled. 

 

The constructor of the frame Teseo() is the first method 

automatically called by the Java virtual machine, therefore it is 

used to initialize the form. The init is divided into a design side, 

which instantiates the Swing and AWT palette of the frame via 

the method initComponents(), and a source side, which is 

related to the method initMyComponents(). The source side 

resets the estimation, allocates and initializes the variables and 



 

 

objects to it in charge, and completes the instantiation of a set 

of elements of the frame: 

 VSI update. 

The Verbose System Information is displayed. This is 

a JTextArea within a JScrollPane, placed in a 

JDialog external to the frame, which acts as output 

both to report any anomalies in the use of the client, 

as the occurrence of some Exception, and to tell the 

user information about the client, such as setting 

parameters intrinsic to it. The VSI can be 

hidden/shown through the option Settings ! View of 

the menu. Fig. 11 gives an example of a VSI 

information flow; 

 
Fig. 11 screenshot of the VSI during the use of Teseo client 

 Init of client-node communication. 

It is set to serial the type of packet source, and it is 

chosen a default serial port, the USB0 (/dev/ttyUSB0) 

with its baud rate, which is 115200 baud for the 

Tmote Sky. The resulting COM port is labeled with 

the syntax serial@/dev/ttyUSB0:tmote. 

 Init of tracing settings. 

Time values Tu and ¿u / AUDIT_TIME are set to 

Tu =360 ms and ¿u =1200 ms. These values, 

editable by the menu Settings ! Trace, pose some 

temporal constraints on the visualization of the 

trajectory of the mobile node in the MapPanel. 

 Init of channel parameters. 

It is instantiated the transmission channel defined by 

the class Channel, setting the ¯  and °  parameters 

with two default values that are merely suggestive: 

¯ = ¡39:7 dBm and° = 3:04. It is also set to 

P tx
j = 0 dBm the transmission power of each node j 

at the distance of 1 m. 

 Init of the map. 

It is Initialized the graphic environment in which the 

mobile node is displayed, by invoking the method 

initEnvironment(String) of the class MapPanel, that 

receives as input parameters one of the maps stored in 

the maps directory of the package teseo. 

After the initialization phase, the frame remains in an idle 

state, as long as the user not only connects the client to the 

mobile node but also starts the node. Defining the input source 

to the client, via the control panel, it is possible to start the 

mobile node by pressing the Start button. Doing so, the 

ActionEvent of the JButton calls the routine start(), which 

establishes a connection with the mobile node, if it is not been 

done before, by calling the method connect(String). This 

method creates an object PhoenixSource to automate both the 

reading and the dispatching of packages and the restarting of 

the communication port. The PhoenixSource is coupled to an 

object MoteIF which provides an interface Java at the 

application level to receive messages from and send messages 

to the Tmote Sky. At this point, the JFrame is registered as a 

MessageListeners of the MoteIF for each of the types of 

messages DataMsg, MoteCtrlMsg, PingClientMsg. If the 

connection is successful, the command,START, is forwarded 

to the mobile node using the function send(int, Message) of 

object MoteIF. 

The button relegated to the Stop of the mobile node behaves 

similarly: at the pressure of the corresponding JButton, the 

ActionEvent calls the routine stop(), which immediately 

forwards the command STOP to the mobile node, after 

verifying that Teseo is connected to it. Then, if the mobile node 

is successfully stopped, the routine disconnects the client, 

calling the method disconnect(String) which unregisters the 

listeners of the messages and executes the shutdown() of the 

PhoenixSource. From the moment the mobile node is no 

longer in the state DO_NOTHING, the frame becomes 

sensitive to receive messages transmitted via USB (serial) from 

the mobile node. The message_t received are handled by the 

synchronized method messageReceived(int, Message), which 

performs certain operations depending on the type of the 

received message. If it is a PingClientMsg and if it is the first 

one of this type that the client has received, the frame: 

 gains knowledge of the ID of the mobile node with 

whom the client is connected and it stores its frequency 

and transmission power; 

 synchronizes itself with the mobile node. To do this it is 

instantiated a Timer, which schedules the execution of 

a EstimateTimerTask at a fixed rate ofTc = 

AUDIT_TIME ms. EstimateTimerTask is a subclass of 

the class TimerTask and it implements the interface 

Runnable: when the AUDIT_TIME ms are passed, the 

method run() of TimerEstimate is invoked, which calls 

the method estimate2D() of class Estimation, global 

variable of the frame. 



 

 

Then the method ends by updating the counter of the steps 

performed by the mobile node and, if at least one DataMsg is 

not yet arrived, it resets the HashMap<Integer, Node> of the 

MapPanel class, related to the fixed nodes that formed the 

group of nodes used by the mobile node in the previous 

estimate. If it is a DataMsg and if it is the first one of this type 

that the client has received since the last position estimation 

executed, the frame resets the HashMap<Integer, Node> of 

the MapPanel. Then, if the fixed node to which the DataMsg 

belongs is present in the map, it is added, with his ID, to the 

HashMap<Integer, Node> of the MapPanel and its 

coordinates are added into the Vector<Coordinate2D> of the 

Estimate together with the measure of the RSS that is put in 

column of the Vector<Integer> of the class Estimate. The 

method messageReceived int, Message), as mentioned, 

continues to discriminate messages for Tc ms, and then 

decreed the beginning of the process of mobile node position 

estimation, assigned to the class Estimate. Before the timer 

expires, the client must be able to form the set of fixed nodes 

assigned to the current step, assuming that the mobile node is 

inside a communication range that allows him to communicate 

with a non-empty group of fixed nodes, in order to allow the 

MAT algorithm to make an estimate that is not the simple 

evolution of the state of an open-loop system. For a deeper 

understanding of the functioning of the client will now be 

outlined, one by one, the classes Channel, Estimate, 

MapPanel, VariantExtendedKalmanFilter that are those 

that most characterize the MAT algorithm. 

A. Channel 

This class implements the channel model presented in Sec. 2. 

The constructor requests to set the transmission power P tx
j  of 

all fixed nodes, the attenuation ¯  of the channel and the loss 

factor ° . Method getPower(double) returns the value of power 

Pij, i.e. the power of the mobile node i function of the 

distance from the fixed nodej. The R2 distance between two 

nodes is given by the method get2Dnorm(double, double, 

double, double). Essential to compute the estimation is the 

method getDerivativesPower(double, double, double), that 

returns the elements of (6). 

B. VariantExtendedKalmanFilter 

This class hold the model and dynamic of the EKF, 

implementing Alg. 1. It uses the JAMA (JAva MAtrix package) 

library [22], version 1.0.2, a linear algebra package that 

provides user-level classes for constructing and manipulating 

real, dense matrices. The constructor of the class builds matrix 

A  of the state model, method setInitialCondition() fixes the 

initial conditions, as they has been defined in Sec. 3. Instead, 

method update(double[][], double[][], Channel) is designed 

to implement Alg. 1. 

C. Estimate 

This class is focused on the synchronized method 

estimation2D(), which is divided into the following sequential 

operations: 

 copy in different arrays the values stored by the vectors 

Vector<Coordinate2D> and Vector<Integer>, which 

are passed to method update(double[][], double[][], 

Channel) of VariantExtendedKalmanFilter2D. 

Vector<Integer> stores the measures of RSS made by 

the mobile node in reception of DataMsg messages 

from fixed nodes, while Vector<Coordinate2D> stores 

the corresponding R2 positions of the fixed nodes; 

 execution of the update routine own by the class 

VariantExtendedKalmanFilter2D. This routine, core 

of the MAT algorithm, returns, in a period of 1 ms 

circa, the estimation of the R2 position of the mobile 

node. This values is then stored in a global 

Coordinate2D variable of Estimation class; 

 management of mobile node position. It is saved in the 

object Node of MapPanel; then it is added both to 

Vector<Node>, that collects all the estimated positions 

that has to be logged, and to Vector<Node> of tracing 

option, under some constraints given by the delay ¿u 

and the sampling time Tu. Moreover, some variable are 

reset and the estimate2D() method terminates clearing 

vectors Vector<Coordinate2D> and Vector<Integer> 

and notifying to the frame that the estimation process is 

finished. 

At this point the JFrame is ready to wait a new 

PingClientMsg message, to be followed by other DataMsg 

message used to produce a new estimate of the position of the 

mobile node. 

D. MapPanel 

MapPanel is a sub class of the JPanel which aim is to 

coordinate the visualization of the graphical environment of the 

map. Teseo holds a global instance of MapPanel, initialized 

invoking the routine initEnvironment(String). The first activity 

of the MapPanel is to upload both the image file of the default 

map and the locations of fixed nodes, deployed in advance 

within the various locations on the map. To simplify this 

configuration step it has been implemented a parser that reads 

the settings directly from text configuration files identified by 

the extension .map. The parsing is performed by the method 

parseMapFile(String) which is passed as a parameter the name 

of the configuration file, contained in the subdirectory /maps of 

package teseo. The successful completion of parsing operation 

depends on the following rules: 

 first line of the file has to contain the name of image file 

of the map. This file has .jpg extension, and its 

dimension must be equal to 640x480 pixels; 

 second line has to point the position of the origin of the 

2-dimensional referral system, used to measure the 

position of the nodes in the environment. The unit of 

the origin should be in pixels; 

 third line has to indicate the length in meters of a screen 

pixel. This is an essential factor of scale in order to 

display properly the position of the nodes (fixed or 

mobile) in the GUI; 



 

 

 following lines have to list the details of each fixed 

node. The details are the ID, the abscissa, the ordinate 

and the z-axis of the nodes. The values are separated by 

a comma and the unit of the coordinates is in meters. 

Lines of /maps file are progressively enumerated, excluding 

empty lines and comments. The file scan is performed using a 

simple text scanner of the Java standard library which can parse 

primitive data types and strings using regular expressions. A 

Scanner separates the input into various tokens distinguished 

by a delimiter pattern, which by default is the whitespace 

character. Nodes are saved in a HashMap<Integer, Node>. 

Indexing is performed using as key the node IDs, which are 

intrinsically unique. If necessary, to access the contents of the 

entire map HashMap<Integer, Node>, it is possible to use an 

Iterator on the Set of the keys. This set is accessible in one 

step through the method keySet() of the class Map<Integer, 

Node>. After the completion of the parsing, the method 

loadImage(String) loads the icons associated to the mobile 

node, the fixed nodes and the virtual origin of the axes. The 

mobile node is marked by a green rectangle, while the fixed 

nodes, at each k  step of the MAT algorithm, are blue or red 

rectangle. The color of the fixed nodes depends on whether or 

not the nodes belongs to the set chosen by the mobile node to 

estimate the position in the time interval[(k¡1)Tc kTc]. If a 

fixed node is selected it turns to blue, hence it is red colored. 

The origin of the reference system, whose display is optional, is 

an olive green viewfinder. Assuming that the loading of some 

images is not successful, it is expected to replace the images 

with a rectangle of the class Graphics. The last action of the 

initialization, afterwards creating Vector<Node> of the Trace 

Path functionality, it is the start of the refreshing Thread of 

the JPanel, whom sampling time is given by the constant 

REFRESH_TIME. The refresh repeatedly calls the method 

repaint() which in turn invokes paintComponent(Graphics). 

This one draws the map and the origin; the fixed nodes, 

iterating drawAnchorNode(Node, Graphics, boolean), if it is 

checked the JCheckBoxMenuItem Beacons; the mobile node, 

drawMobileNode(Graphics); the trace of the path of the 

mobile node, if requested, obtained with a linear interpolation 

of the positions. Lines are drawn with the method 

drawThickLine(Graphics, int, int, int, int, int, Color). The 

positions are taken in chronological order from a 

Vector<Node> thanks to an iteration on a Enumeration of 

the elements of the vector. Furthermore, starting from a certain 

length of track, more than MIN_TRACE_SIZE, the history of 

the trace begins to be erased, giving to the path a snake effect. 

VII. SIMULATIONS WITH EXPERIMENTAL SETUP 

To validate the algorithm described in Sec. 3 simulations 

have been performed on the base of the network data derived 

from the WSAN installed in the Department of Information 

Engineering (DEI) of the University of Padova [5]; the testbed 

considered (a portion of the mentioned WSAN) is depicted in 

Fig. 12 and comprises 12 Tmote Sky [10] whose Chipcon 

CC2420 radio has an accuracy of 6 dBm.  

Here, the agents have a distance of about 4 meters from 

each other on an almost regular triangular grid of 15£10 m2. 

This testbed is partially unstructured with laboratory/office 

furniture and equipment, and three partition walls separate two 

rooms with an hallway. The agents communicate only through 

the wireless channel and. Access points are also present in the 

environment, hence the testbed is subject to a reasonable level 

of interference and electromagnetic noise. 

 

Fig. 12 architecture of the testbed, covering an area of about 150 m2. 

The agents communicate only through the wireless channel 

All Tmote Sky agents, in groups of up to four elements, are 

connected via USB (serial) hubs that provide power supply and 

allow to collect log data for debugging intents. The agents are 

also connected to embedded computers that act as gateways. 

These mini PCs are processing units which interact with the 

programming of the agents and they are connected via Ethernet 

to a central server from which to monitor, manage and check 

the entire WSN. 

For the estimation of the channel parameters ¯ , °  in (3) the 

least-square method in [19], which is a distributed version of 

[20], has been adopted. The results (° = 2:04, ¯ = ¡41:69 

dBm, ¾2 = 7:57 m2) provide the model in Fig. 13. 

 
Fig. 13 power modelP = ¯ ¡ ° log10 d, as function of distance d . 

Notice that the plot is limited to distances below 15 meters, since it is 

not worth to consider larger intervals 



 

 

The packet loss probability in Fig. 14, equal for each agent, is 

obtained as a least-square interpolation of experimental data 

collected in the testbed of DEI. 

 
Fig. 14 packet loss probability. The red dots are samples computed on 

experimental data; the blue line is their least-square interpolation 

The movement of an agent is simulated through a random 

walk model 
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A. Performance evaluation 

In general, the performances of any tracking algorithm 

depend on different factors, such as density and connectivity of 

the beacons, computation and communication costs, fault 

tolerance and robustness. In Fig. 15, the position estimation 

error jjb» ¡ »jj2 is plotted for different algorithm parameters, 

as a criteria to evaluate the goodness of the tracking algorithm. 

 

Interestingly, the value of C  (maximum number of RSS data 

that each agent collects from neighbors to average the received 

power), over a certain threshold, does not affect significantly 

the position estimate, while the promptness of the system slows 

down increasing C . The system behaves similarly as for the 

bound on the received power, and increasing RSSbound (the 

minimum power level acceptable for node-to-node distance 

estimation) would lower the number of useful signals in the 

localization process. Finally, increasing the measurement noise 

variance ¾2
v, worsen the performance, as expected. 

 

 

 
Fig. 15 Estimation errors for different simulation parameters 

If the extended version of the EKF has become necessary to 

deal with the non-linearity of the system, the use of an 

Unscented Kalman Filter (UKF) or a Sequential Monte Carlo 

(SMC) method has not be considered since these two 

approaches are proven to not improve significantly the 

performance in terms of localization accuracy. In fact, the 

SMC, which is in general a better solution than a UKF [23], 

tends to outperform the Kalman as the localization errors 

increase and it cannot considerably filter the non-Gaussian 

components. 

VIII. CONCLUSION 

In this work, an application for multi-agent tracking in wireless 

networks, with emphasis on the software design and the code 

implementation, is presented. The application employs a RF-



 

 

channel model to estimate the distance among agents belonging 

to the WSAN. To mitigate the nuisances induced by the not 

perfect wireless communication, by the implementation in an 

unknown and unstructured environment, and by the presence 

of noisy measurements, an EKF is designed to provide 

corrected estimates of the mobile agent positions. Moreover, 

attention has been posed on the timings among the events 

occurring within the agent and the synchronization with the 

other peers of the network, to ensure the correct sequence and 

completion of the tracking procedure. Simulations and 

experiments on a real testbed validate the goodness of the 

approach and assess it is suitable for a real time implementation 

on embedded devices. 
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