
Multidimensional Newton-Raphson consensus

for distributed convex optimization

Filippo Zanella, Damiano Varagnolo, Angelo Cenedese, Gianluigi Pillonetto, Luca Schenato

Abstract— In this work we consider a multidimensional
distributed optimization technique that is suitable for multi-
agents systems subject to limited communication connectivity.
In particular, we consider a convex unconstrained additive
problem, i.e. a case where the global convex unconstrained
multidimensional cost function is given by the sum of local
cost functions available only to the specific owning agents. We
show how, by exploiting the separation of time-scales principle,
the multidimensional consensus-based strategy approximates a
Newton-Raphson descent algorithm. We propose two alternative
optimization strategies corresponding to approximations of
the main procedure. These approximations introduce tradeoffs
between the required communication bandwidth and the con-
vergence speed/accuracy of the results. We provide analytical
proofs of convergence and numerical simulations supporting
the intuitions developed through the paper.

Index Terms— multidimensional distributed optimization,
multidimensional convex optimization, consensus algorithms,
multi-agent systems, Newton-Raphson methods

I. INTRODUCTION

To cope with the growing mankind demands, humanity is

building greater and greater systems. But, since big central-

ized systems suffer small structural flexibility and robustness

to failures, nowadays trends are to shift towards distributed

services and structures. Brilliant examples are the (current)

principal source of information - Internet, and the (future)

network of renewable energy sources - wind farms, wave

parks and home solar systems. But, to operate at their best,

these networks are required to distributedly solve complex

optimization problems. Computations should thus require

minimal coordination efforts, small computational and mem-

ory requirements, and do not rely on central processing units.

Development and study of such algorithms are major

research topics in the area of control and system theory [1],

[2], and have lead up to now to numerous contributions.

These can be roughly divided into three main categories:

methods based on primal decompositions, methods based on

dual decomposition, and heuristic methods.

Primal decomposition methods operate manipulating the

primal variables, often through subgradient methods, [3] and

references therein. Despite they are widely applicable, they

are easy to implement and they require mild assumptions on

the objective functions, they may be rather slow and may

not progress at each iteration [4, Chap. 6]. Implementations

The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreement n◦257462 HYCON2 Network of excellence and n◦223866
FeedNetBack, by Progetto di Ateneo CPDA090135/09 funded by the
University of Padova, and by the Italian PRIN Project “New Methods
and Algorithms for Identification and Adaptive Control of Technological
Systems”.

can be based on incremental gradients methods [5] with

deterministic [6] or randomized [7] approaches, and they

may use opportune projection steps to account for possible

constraints [8].

Decomposition methods instead operate manipulating the

dual problem, usually splitting it into simpler sub-tasks that

require the agents to own local copies of the to-be-updated

variables. Convergence to the global optimum is ensured

constraining the local variables to converge to a common

value [9]. In the class of dual decomposition methods, a par-

ticularly popular strategy is the Alternating Direction Method

of Multipliers (ADMM) developed in [1, pp. 253-261] and

recently proposed in various distributed contexts [10], [11].

An other interesting approach, suitable only for particular

optimization problems, is to use the so-called Fast-Lipschitz

methods [12], [13]. These exploit particular structures of the

objective functions and constraints to increase the conver-

gence speed. Alternative distributed optimization approaches

are based on heuristics like swarm optimization [14] or

genetic algorithms [15]. However their convergence and

performance properties are difficult to be studied analytically.

Statement of contribution: here we focus on the uncon-

strained minimization of a sum of multidimensional convex

functions, where each component of the global function is a

private local cost available only to a specific agent. We thus

offer a distributed algorithm that approximatively operates as

a Newton-Raphson minimization procedure, and then derive

two approximated versions that trade-off between the re-

quired communication bandwidth and the convergence speed

/ accuracy of the results. For these strategies we provide

convergence proofs and analysis on the robustness on initial

conditions of the algorithms, under the assumptions that

local cost functions are convex and smooth, and that com-

munication schemes are synchronous. The main algorithm

is an extension of what has been proposed in [16], while

the approximated versions are completely novel. We notice

that communications between agents are based on classical

average-consensus algorithms [17]. The offered algorithms

inherit thus the good properties of consensus algorithms,

namely their simplicity, their potential implementation with

asynchronous communication schemes, and their ability to

adapt to time-varying network topologies.

Structure of the paper: in Sec. II we formulate the

problem from a mathematical point of view. In Sec. III we

derive the main generic distributed algorithm, from which we

derive three different and specific instances in Sections IV, V

and VI. In Sec. VII we briefly discuss the properties of these

algorithms, and then in Sec. VIII we show their effectiveness



by means of numerical examples. Finally in Sec. IX we draw

some concluding remarks1.

II. PROBLEM FORMULATION

We assume that S agents, each endowed with the local N -

dimensional and strictly convex cost function fi : R
N 7→

R, aim to collaborate in order to minimize the global cost

function

f : R
N 7→ R f (x) =

1

S

S
∑

i=1

fi (x) (1)

where x := [x1 · · · xN ]
T

is the generic element in R
N .

Agents thus want to distributedly compute

x∗ := arg min
x

f (x) (2)

exploiting low-complexity distributed optimization algo-

rithms. As in [16], we model the communication network

as a graph G = (V, E) whose vertexes V = {1, 2, . . . , S}
represent the agents and the edges (i, j) ∈ E represent the

available communication links. We assume that the graph is

undirected and connected. We say that a stochastic matrix

P ∈ R
S×S , i.e. a matrix whose elements are non-negative

and P1S = 1S , where 1S := [1 1 · · · 1]
T

∈ R
S , is

consistent with a graph G if Pij > 0 only if (i, j) ∈ E .

If P is also symmetric and includes all edges, i.e. Pij > 0
if (i, j) ∈ E , then limk→∞ P k = 1

S
1S1

T
S . Such matrix P is

also often referred as a consensus matrix.

In the following we use xi(k) := [xi,1(k) · · · xi,N (k)]
T

to indicate the input location of agent i at time k, and

operator ∇ to indicate differentiation w.r.t. x, i.e.

∇fi (xi(k)) :=

[

∂fi

∂x1

∣

∣

∣

∣

xi(k)

· · ·
∂fi

∂xN

∣

∣

∣

∣

xi(k)

]T

(3)

∇2fi (xi(k)) :=









∂2fi

∂xm∂xn

∣

∣

∣

∣

xi(k)









. (4)

In general we use the fraction bar to indicate the Hadamard

division, i.e. the component-wise division of vectors a,b ∈
R

N

a

b
:=

[

a1

b1
, · · · ,

aN

bN

]T

. (5)

In general we use bold fonts to indicate vectorial quantities

or functions which range is vectorial, plain italic fonts to

indicate scalar quantities or functions which range is a scalar.

We use capital italic fonts to indicate matrix quantities

and capital bold fonts to indicate matrix quantities derived

stacking other matrix quantities. As in [16], to simplify the

proofs we exploit the following assumption, implying that

x∗ is unique:

Assumption 1. Local functions fi belongs to C2,∀i, i.e.

they are continuous up to the second partial derivatives, their

1The proofs of the proposed propositions can be found in the homony-
mous technical report available on the authors’ webpages.

second partial derivatives are strictly positive, bounded, and

they are defined for all x ∈ R
N . Moreover each scalar

component of the global minimizer x∗ does not take value

on the extended values ±∞.

We notice that from the strict convexity assumptions it

follows that x∗ is unique. Moreover the assumption that each

scalar component of x∗ does not take value on the extended

values is to obtain convergence proofs that do not require

modifications of the standard multi-time-scales approaches

for singular perturbation model analysis [18], [19, Chap. 11].

We also notice that these smoothness assumptions, despite re-

strictive, have been used also by other authors, see e.g. [20],

[21].

A. Notation for Multidimensional Consensus Algorithms

Assume

Ai =









a
(i)
11 · · · a

(i)
1M

...
...

a
(i)
N1 · · · a

(i)
NM









i = 1, . . . , S

to be S generic N × M matrices associated to agents

1, . . . , S, and that these agents want to distributedly compute
1
S

∑S
i=1 Ai by means of the double-stochastic communica-

tion matrix P . In the following sections, to indicate the whole

set of the single component-wise steps








a
(1)
pq (k + 1)

...

a
(S)
pq (k + 1)









= P









a
(1)
pq (k)

...

a
(S)
pq (k)









p = 1, . . . , N
q = 1, . . . ,M

(6)

we use the equivalent matricial notation






A1(k + 1)
...

AS(k + 1)






= (P ⊗ IN )







A1(k)
...

AS(k)






(7)

where IN is the identity in R
N×N and ⊗ is the Kronecker

product. Notice that the notation is suited also for vectorial

quantities, e.g. Ai ∈ R
N .

III. DISTRIBUTED MULTIDIMENSIONAL

CONSENSUS-BASED OPTIMIZATION

Assume the local cost functions to be quadratic, i.e.

fi (x) =
1

2
(x − bi)

T
Ai (x − bi)

where Ai > 0. Straightforward computations show that the

unique minimizer of f is given by

x∗ =

(

1

S

S
∑

i=1

Ai

)−1(

1

S

S
∑

i=1

Aibi

)

and can thus be computed using the output of two average

consensus algorithms. Defining the local variables

yi(0) := Aibi ∈ R
N Zi(0) := Ai ∈ R

N×N



and the corresponding compact forms

Y (k) :=







y1(k)
...

yS(k)






∈ R

NS Z(k) :=







Z1(k)
...

ZS(k)






∈ R

NS×N

then the algorithm

Y (k + 1) =
(

P ⊗ IN

)

Y (k) (8)

Z(k + 1) =
(

P ⊗ IN

)

Z(k) (9)

xi(k) = (Zi(k))
−1

yi(k) i = 1, . . . , S (10)

alternates average-consensus steps (i.e. (8) and (9), given the

considerations in Sec. II-A) with local updates (i.e. (10)),

and is s.t. limk→∞ xi(k) = x∗. The element xi(k) can thus

be considered the local estimate of the global minimizer x∗

at time k. If the cost functions are not quadratic, then the

previous strategy cannot be applied as it is but needs to be

modified using the guidelines:

1) in general

yi(0) = ∇2fi (xi(0))xi(0) Zi(0) = ∇2fi (xi(0)) .

For quadratic scenarios these two quantities are in fact

independent of xi, but this does not happen in the

general case. Consensus steps (8)-(9) should then be

performed considering that the xi(k)’s change over

time. This requires to appropriately design the update

rules for yi and Zi;

2) (10) might lead to estimates that change too rapidly.

This requires to take smaller steps towards the estimated

minimum (Zi(k))
−1

yi(k).

To this aim, we propose the following general Alg. 1.

Notice that it depends on quantities that have not yet been

defined, namely gi(k) and Hi(k), i = 1, . . . , S.

The importance of this algorithm is given by the fact that,

under opportune hypotheses, the temporal evolution of the

average state x := 1
S

∑S
i=1 xi approximatively follows the

update rule

ẋ(t) = −x(t) +

(

1

S

S
∑

i=1

Hi (x(t))

)−1(

1

S

S
∑

i=1

gi (x(t))

)

(see proof of Prop. 2). In the following we show that this

property is appealing since, exploiting proper choices of

gi(k) and Hi(k), we can obtain distributed optimization

algorithms with desirable properties such as convergence

to the global optimum and small communication bandwidth

requirements.

IV. DISTRIBUTED MULTIDIMENSIONAL

NEWTON-RAPHSON

Consider the following Alg. 2, based on the general

layout given by Alg. 1. We show now how it corresponds

to the multidimensional extension of the distributed scalar

optimizer described in [16], and that it distributedly computes

the global optimum x∗. We notice that initializations given in

line 5 are critical for the convergence to the global minimizer;

lines 8-9 are local operations assuring the Newton-Raphson

computation to be based on the current local estimates xi(k);
lines 10-11 perform the consensus operations, and operations

in line 13 are again local operations performing convex

combinations between the past and new estimates.

Algorithm 1 Distributed Optimization - General Layout

(variables)

1: xi(k),yi(k),gi(k) ∈ R
N ; Zi(k), Hi(k) ∈ R

N×N for

i = 1, . . . , S and k = 1, 2, . . .
(notice: gi and Hi defined in Alg. 2, Alg. 3, Alg. 4)

(parameters)

2: P ∈ R
S×S , consensus matrix

3: ε ∈ (0, 1)

(initialization)

4: for i = 1, . . . , S do

5:

set: yi(0) = gi (−1) = 0

Zi(0) = Hi (−1) = 0

xi(0) = 0

(main algorithm)

6: for k = 1, 2, . . . do

(local updates)

7: for i = 1, . . . , S do

8: yi(k) = yi(k − 1) + gi (k − 1) − gi (k − 2)
9: Zi(k) = Zi(k − 1) + Hi (k − 1) − Hi (k − 2)

(multidimensional average consensus step)

10: Y (k) =
(

P ⊗ IN

)

Y (k)
11: Z(k) =

(

P ⊗ IN

)

Z(k)
(local updates)

12: for i = 1, . . . , S do

13: xi(k) = (1 − ε)xi(k − 1) + ε (Zi(k))
−1

yi(k)

The convergence properties can be proved exploiting a

state augmentation, recognizing the existence of a two-

time scales dynamical system regulated by the parameter

ε, and then considering that, for small ε, the fluctuations

induced by the fast subsystem exponentially vanish while the

dynamics of the slow subsystem correspond to continuous-

time Newton-Raphson algorithm that converges to the global

optimum given the previously posed Assumption 1. For this

purpose it is useful to define the shorthands

G (k) :=







g1(k)
...

gS(k)






∈ R

NS H (k) :=







H1(k)
...

HS(k)






∈ R

NS×N

Algorithm 2 Distributed Newton-Raphson

Execute Alg. 1 with definitions

gi (k) := ∇2fi (xi(k))xi(k) −∇fi (xi(k))∈ R
N

Hi (k) := ∇2fi (xi(k))∈ R
N×N .

The first step is then to introduce the additional variables

V (k) = G(k−1) and W(k) = H(k−1) and rewrite Alg. 2



as

V (k) = G(k − 1)
W(k) = H(k − 1)
Y (k) = (P⊗IN )

(

Y (k−1)+G(k−1)−V (k−1)
)

Z(k) = (P⊗IN )
(

Z(k−1)+H(k−1)−W(k−1)
)

xi(k) = (1−ε)xi(k − 1)+ε (Zi(k))
−1

yi(k)
(11)

from which it is possible to recognize the tracking of the

quantities xi(k) plus the consensus step (1st to 4th rows) and

the local smooth updates (5th row). (11) can be considered

the Euler discretization, with time interval T = ε, of the

continuous time system

εV̇ (t) = −V (t) + G (t)

εẆ(t) = −W(t) + H (t)

εẎ (t) = −KY (t) + (INS − K) [G (t) − V (t)]

εŻ(t) = −KZ(t) + (INS − K) [H (t) − W(t)]

ẋi(t) = −xi(t) + (Zi(t))
−1

yi(t)

(12)

with K := INS−(P⊗IN ). It is immediate to show that K is

positive semidefinite, its kernel is generated by 1NS , and that

its eigenvalues satisfy 0 = λ1 < Re [λ2] ≤ · · · ≤ Re [λNS ] <
2, where Re [λ] indicates the real part of λ. (12) is constituted

by two dynamical subsystems with different time-scales, one

of which is regulated by the parameter ε. Exploiting classical

time-separation techniques [19, Chap. 11], splitting the dy-

namics in the two time scales and studying them separately

for sufficiently small ε, it follows that the fast dynamics, i.e.

the first four equations of (12), are s.t. xi(t) ≈ x(t), where

x(t) := 1
S

∑S
i=1 xi(t), and moreover x(t) evolves with good

approximation following the ordinary differential equation

ẋ(t) = −
[

∇2f (x(t))
]−1

∇f (x(t)) (13)

corresponding to a continuous Newton-Raphson algorithm2

that we will prove to be always convergent to the global

optimum x∗. These observations are formally stated in the

following (proof in Appendix):

Proposition 2. Consider Alg. 2, equivalent to system (11)

with initial conditions V (0) = Y (0) = 0 and W(0) =
Z(0) = 0. If Assumption 1 holds true, then there ex-

ists an ε ∈ R+ s.t. if ε < ε then Alg. 2 distributedly

and asymptotically computes the global optimum x∗, i.e.

limk→+∞ xi(k) = x∗ for all i.

V. DISTRIBUTED MULTIDIMENSIONAL JACOBI

Implementation of Alg. 2 requires agents to exchange infor-

mation on about O
(

N2
)

scalars. This could be prohibitive

in multidimensional scenarios with serious communication

bandwidth constraints and large N . In these cases, to min-

imize the amount of information to be exchanged it is

meaningful to let Hi(k) be not the whole Hessian matrix

∇2fi (xi(k)), but only its diagonal. The corresponding al-

gorithm, that we call Jacobi due to the underlying diago-

nalization process, is offered in Alg. 3. We notice that this

2Asymptotic properties of the scalar and continuous time Newton-
Raphson method can be found e.g. in [22], [23].

diagonalization process has already been used in literature,

e.g., see [24], [25], even if in conjunction with different

communication structures.

Algorithm 3 Distributed Jacobi

Execute Alg. 1 with definitions

gi (k) := Hi (k)xi(k) −∇fi (xi(k))∈ R
N

Hi (k) :=













∂2fi

∂x2

1

∣

∣

∣

xi(k)
0

. . .

0 ∂2fi

∂x2

N

∣

∣

∣

xi(k)













∈ R
N×N .

Possible interpretations of the proposed approximation are:

• agents perform modified second-order Taylor approxi-

mations of the local functions;

• agents choose a steepest descent direction in a simplified

norm;

• ellipsoids corresponding to the various Hessians ∇2fi

are approximated with ellipsoids having axes that are

parallel with the current coordinate system.

It is easy to show that this approximated strategy is

invariant over affine transformations T : R
N×N 7→

R
N×N , T invertible and s.t. fnew(x) = f(Tx), as classical

Newton-Raphson algorithms are [26, Sec. 9.5]. It is moreover

possible to prove that also Alg. 3 ensures the convergence

to the global optimum, i.e. to prove the following (proof in

Appendix):

Proposition 3. If Assumption 1 holds true, then there exists

an ε′ ∈ R+ s.t. if ε < ε′ then Alg. 3 distributedly

and asymptotically computes the global optimum x∗, i.e.

limk→+∞ xi(k) = x∗ for all i.

Analytical characterization of the convergence speed of

Alg. 2 and Alg. 3 is left as a future work.

VI. DISTRIBUTED MULTIDIMENSIONAL GRADIENT

DESCENT

We notice now that the distributed Jacobi relieves the com-

putational requirements of the distributed Newton-Raphson,

since the inversion of Hi (xi(k)) corresponds to the inversion

of N scalars, but nonetheless agents still have to compute

the local second derivatives ∂2fi

∂x2
n

∣

∣

∣

xi(k)
. If this task is still too

consuming, e.g. in cases where nodes have severe computa-

tional constraints, it is possible to redefine Hi(k) in Alg. 1

in a way that it reduces to a gradient-descent procedure, as

did in the following algorithm.

Algorithm 4 Distributed gradient-descent

Execute Alg. 1 with definitions

gi (k) := xi(k) −∇fi (xi(k))∈ R
N

Hi (k) := IN ∈ R
N×N .



VII. DISCUSSION ON THE PREVIOUS ALGORITHMS

The costs associated to the previously proposed strategies

are summarized in Tab. I.

Algorithm 2 3 4

Computational Cost O
`

N3
´

O (N) O (N)
Communication Cost O

`

N2
´

O (N) O (N)
Memory Cost O

`

N2
´

O (N) O (N)

TABLE I

COMPUTATIONAL, COMMUNICATION AND MEMORY COSTS OF

ALGORITHMS 2, 3, AND 4 PER SINGLE UNIT AND SINGLE STEP (LINES 6

TO 13 OF ALGORITHM 1).

We notice that the approximation of the Hessian by

neglecting the off-diagonal terms has been already proposed

in centralized approaches, e.g. [27]. Intuitively, the effect of

this diagonal approximation is the following: the full Newton

method perform both scaling and rotation of the steepest

descent step. The diagonal modified Newton method only

scales the descent step in each direction, thus the more the

directions of the maximal and minimal curvatures are aligned

with the axes, the more the approximated method captures

the curvature information and performs better.

A final remark is that the analytic Hessian can be ap-

proximated in several ways, but in general it is necessary

to consider only approximations that maintain symmetry

and positive definiteness. In cases where this definiteness is

lacking, or matrices are bad conditioned, modifications are

usually performed e.g. through Cholesky factorizations [28].

VIII. NUMERICAL EXAMPLES

We consider a ring communication graph, where agents

can communicate only to their left and right neighbors, and

thus the symmetric circulant communication matrix

P =















0.5 0.25 0.25
0.25 0.5 0.25

. . .
. . .

. . .

0.25 0.5 0.25
0.25 0.25 0.5















. (14)

We consider S = 15, N = 2, and local objective functions

randomly generated as

fi (x) = exp
(

(x − bi)
T

Ai (x − bi)
)

, i = 1, . . . , S

where bi ∼ [U [−5, 5] , U [−5, 5]]
T

, Ai = DiD
T
i > 0, and

Di :=

[

d11 d12

d21 d22

]

∈ R
2×2 . (15)

We compare the performances of the previous algorithms

in the following three different scenarios:

S1 :











d11 = d22 ∼ U [−0.08, 0.08] R [−1, 1]

d12 ∼ U [−0.08, 0.08] R [−0.25, 0.5]

d21 ∼ U [−0.08, 0.08] R [−0.5, 0.25]

(16)

where the R-distribution as:

R [c, d] :=

{

c with probability 1/2
d with probability 1/2

i.e. the axes of each contour plot are randomly oriented in

the 2-D plane.

S2 :











d11 ∼ U [−0.08, 0.08]

d12 = d21 = 0

d22 = 2 d11

(17)

i.e. the axes of all the contour plots of the fi surfaces are

aligned with the axes of the natural reference system.

S3 :











d11 ∼ U [−0.08, 0.08]

d12 = d21 = −0.01

d22 ∼ R [0.9, 1.1] d11

(18)

i.e. the axes of each contour plot are randomly oriented along

the bisection of the first and third quadrant.

The contour plots of the global cost functions f̄ ’s gener-

ated using (16), (17) and (18), and the evolution of the local

states xi for the three algorithms are shown in Fig. 1.

We notice that Alg. 2 and Alg. 3 have qualitatively the

same behavior for the scenarios (16) and (17). This is

because the approximation introduced in Alg. 3 is actually a

good approximation of the analytical Hessians ∇2fi (xi(k)).
Conversely, Alg. 4 presents a remarkably slower convergence

rate. Since the computational time of Alg. 3 and 4 are

comparable, Alg. 3 seems to represent the best choice among

all the presented solutions.

IX. CONCLUSIONS AND FUTURE WORKS

Starting from [16], we offered a multidimensional dis-

tributed convex optimization algorithm that behaves approxi-

matively as a Newton-Raphson procedure. We then proposed

two approximated versions of the main algorithm to take

into account the possible computational, communication and

memory constraints that may arise in practical scenarios.

We produced proofs of convergence under the assumptions

of dealing with smooth convex functions, and numerical

simulations to compare the performances of the proposed

algorithms.

Currently there are many open future research directions.

A first branch is about the analytical characterization of the

speeds of convergence of the proposed strategies, while an

other one is about the application of quasi-Newton methods

to avoid the computation of the Hessians and the use of

trust region methods. Finally, an important future extension

is to allow the strategy to be implemented in asynchronous

communication frameworks.



−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x
2

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

Distributed Newton-Raphson

x
1
,i
(k

)

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2
Distributed Jacobi

0 2000 4000 6000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Distributed gradient descent

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x
2

0 20 40 60 80 100
−3

−2

−1

0

1

2

x
1
,i
(k

)

0 20 40 60 80 100
−3

−2

−1

0

1

2

0 2000 4000 6000
−3

−2

−1

0

1

2

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x
2

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

k (time steps)

x
1
,i
(k

)

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

k (time steps)
2.000 4.000 6.000

−1.5

−1

−0.5

0

0.5

1

1.5

2

k (time steps)

Fig. 1. First column on the left, contours plot of global function f̄ ’s for scenarios S1, S2, S3, respectively (from top to bottom). Black dots indicate
the positions of the global minima x

∗. Second, third and fourth columns, temporal evolutions of the first components of the local states x1, for the case
ε = 0.25 and N = 15. In particular: second column, distributed Newton-Raphson (Alg. 2). Third column, distributed Jacobi (Alg. 3). Fourth column,
distributed gradient descent (Alg. 4). First row, scenario S1. Second row, scenario S2. Third row, scenario S3. The black dashed lines indicate the first
components of the global optima x

∗. Notice that we show a bigger number of time steps for the gradient descent algorithm (fourth column).

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-

tation: Numerical Methods. Athena Scientific, 1997.
[2] D. P. Bertsekas, Network Optimization: Continuous and Discrete

Models. Belmont, Massachusetts: Athena Scientific, 1998.
[3] K. C. Kiwiel, “Convergence of approximate and incremental subgra-

dient methods for convex optimization,” SIAM J. on Optim., vol. 14,
no. 3, pp. 807 – 840, 2004.

[4] B. Johansson, “On distributed optimization in networked systems,”
Ph.D. dissertation, KTH Electrical Engineering, 2008.

[5] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods for
nondifferentiable optimization,” SIAM J. on Optim., vol. 12, no. 1, pp.
109 – 138, 2001.

[6] D. Blatt, A. Hero, and H. Gauchman, “A convergent incremental
gradient method with a constant step size,” SIAM J. on Optim., vol. 18,
no. 1, pp. 29 – 51, 2007.

[7] S. S. Ram, A. Nedić, and V. Veeravalli, “Incremental stochastic
subgradient algorithms for convex optimzation,” SIAM J. on Optim.,
vol. 20, no. 2, pp. 691 – 717, 2009.

[8] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE TAC, vol. 55, no. 4, pp.
922 – 938, 2010.

[9] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and
resource allocation via dual decomposition,” IEEE Trans. on Comm.,
vol. 52, no. 7, pp. 1136 – 1144, 2004.

[10] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNs with noisy links - part I: Distributed estimation of deterministic
signals,” IEEE Trans. on Sig. Proc., vol. 56, pp. 350 – 364, 2008.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Stanford Statistics Dept., Tech. Rep., 2010.

[12] C. Fischione, “F-Lipschitz optimization with Wireless Sensor Net-
works applications,” IEEE TAC, vol. to appear, pp. –, 2011.

[13] C. Fischione and U. Jönsson, “Fast-Lipschitz optimization with Wire-
less Sensor Networks applications,” in IPSN, 2011.

[14] J. Van Ast, R. Babška, and B. D. Schutter, “Particle swarms in
optimization and control,” in IFAC World Congress, 2008.

[15] E. Alba and J. M. Troya, “A survey of parallel distributed genetic
algorithms,” Complexity, vol. 4, no. 4, pp. 31 – 52, 1999.

[16] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato,
“Newton-Raphson consensus for distributed convex optimization,” in
IEEE Conference on Decision and Control, 2011.

[17] F. Garin and L. Schenato, Networked Control Systems. Springer,
2011, ch. A survey on distributed estimation and control applications
using linear consensus algorithms, pp. 75–107.

[18] P. Kokotović, H. K. Khalil, and J. O’Reilly, Singular Perturbation

Methods in Control: Analysis and Design, ser. Classics in applied
mathematics. SIAM, 1999, no. 25.

[19] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2001.
[20] Y. C. Ho, L. Servi, and R. Suri, “A class of center-free resource

allocation algorithms,” Large Scale Systems, vol. 1, pp. 51 – 62, 1980.
[21] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for

distributed resource allocation,” J. Opt. Theory and Applications, vol.
129, no. 3, pp. 469 – 488, 2006.

[22] K. Tanabe, “Global analysis of continuous analogues of the Levenberg-
Marquardt and Newton-Raphson methods for solving nonlinear equa-
tions,” Inst. of Stat. Math., vol. 37, pp. 189–203, 1985.

[23] R. Hauser and J. Nedić, “The continuous Newton-Raphson method
can look ahead,” SIAM J. on Opt., vol. 15, pp. 915 – 925, 2005.

[24] S. Athuraliya and S. H. Low, “Optimization flow control with newton-
like algorithm,” Telecommunication Systems, vol. 15, no. 3-4, pp. 345–
358, 2000.

[25] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated
dual descent for network optimization,” in ACC, 2011.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[27] S. Becker and Y. L. Cun, “Improving the convergence of back-
propagation learning with second order models,” University of
Toronto, Tech. Rep. CRG-TR-88-5, September 1988.

[28] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns
Hopkins University Press, 1996, sec. 4.2.


