
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 1

Newton-Raphson Consensus for
Distributed Convex Optimization

1

2

Damiano Varagnolo, Member, IEEE, Filippo Zanella, Member, IEEE, Angelo Cenedese, Member, IEEE,
Gianluigi Pillonetto, Member, IEEE, and Luca Schenato, Senior Member, IEEE

3

4

Abstract—We address the problem of distributed unconstrained5
convex optimization under separability assumptions, i.e., the6
framework where each agent of a network is endowed with a local7
private multidimensional convex cost, is subject to communication8
constraints, and wants to collaborate to compute the minimizer of9
the sum of the local costs. We propose a design methodology that10
combines average consensus algorithms and separation of time-11
scales ideas. This strategy is proved, under suitable hypotheses,12
to be globally convergent to the true minimizer. Intuitively, the13
procedure lets the agents distributedly compute and sequentially14
update an approximated Newton-Raphson direction by means of15
suitable average consensus ratios. We show with numerical simu-16
lations that the speed of convergence of this strategy is comparable17
with alternative optimization strategies such as the Alternating18
Direction Method of Multipliers. Finally, we propose some alterna-19
tive strategies which trade-off communication and computational20
requirements with convergence speed.21

Index Terms—Consensus, distributed optimization, multi-agent22
systems, Newton-Raphson methods, smooth functions, uncon-23
strained convex optimization.24

I. INTRODUCTION25

O PTIMIZATION is a pervasive concept underlying many26

aspects of modern life [1]–[5], and it also includes the27

management of distributed systems, i.e., artifacts composed by28

a multitude of interacting entities often referred to as “agents”.29

Examples are transportation systems, where the agents are both30

the vehicles and the traffic management devices (traffic lights),31

and smart electrical grids, where the agents are the energy32

producers-consumers and the power transformers-transporters.33

Here we consider the problem of distributed optimization,34

i.e., the class of algorithms suitable for networked systems35
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and characterized by the absence of a centralized coordination 36

unit [6]–[8]. Distributed optimization tools have received an 37

increasing attention over the last years, concurrently with the 38

research on networked control systems. Motivations comprise 39

the fact that the former methods let the networks self-organize 40

and adapt to surrounding and changing environments, and that 41

they are necessary to manage extremely complex systems in 42

an autonomous way with only limited human intervention. 43

In particular we focus on unconstrained convex optimization, 44

although there is a rich literature also on distributed constrained 45

optimization such as Linear Programming [9]. 46

Literature Review: The literature on distributed uncon- 47

strained convex optimization is extremely vast and a first 48

taxonomy can be based whether the strategy uses or not the 49

Lagrangian framework, see, e.g., [5, Ch. 5]. 50

Among the distributed methods exploiting Lagrangian for- 51

malism, the most widely known algorithm is Alternating Di- 52

rection Method of Multipliers (ADMM) [10], whose roots can 53

be traced back to [11]. Its efficacy in several practical scenarios 54

is undoubted, see, e.g., [12] and references therein. A notable 55

size of the dedicated literature focuses on the analysis of its 56

convergence performance and on the tuning of its parameters 57

for optimal convergence speed, see, e.g., [13] for Least Squares 58

(LS) estimation scenarios, [14] for linearly constrained convex 59

programs, and [15] for more general ADMM algorithms. Even 60

if proved to be an effective algorithm, ADMM suffers from re- 61

quiring synchronous communication protocols, although some 62

recent attempts for asynchronous and distributed implementa- 63

tions have appeared [16]–[18]. 64

On the other hand, among the distributed methods not ex- 65

ploiting Lagrangian formalisms, the most popular ones are the 66

Distributed Subgradient Methods (DSMs) [19]. Here the opti- 67

mization of non-smooth cost functions is performed by means 68

of subgradient based descent/ascent directions. These methods 69

arise in both primal and dual formulations, since sometimes 70

it is better to perform dual optimization. Subgradient meth- 71

ods have been exploited for several practical purposes, e.g., 72

to optimally allocate resources in Wireless Sensor Networks 73

(WSNs) [20], to maximize the convergence speeds of gossip 74

algorithms [21], to manage optimality criteria defined in terms 75

of ergodic limits [22]. Several works focus on the analysis of 76

the convergence properties of the DSM basic algorithm [23]– 77

[25] (see [26] for a unified view of many convergence results). 78

We can also find analyses for several extensions of the original 79

idea, e.g., directions that are computed combining information 80

from other agents [27], [28] and stochastic errors in the eval- 81

uation of the subgradients [29]. Explicit characterizations can 82

also show trade-offs between desired accuracy and number of 83

iterations [30]. 84
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These methods have the advantage of being easily dis-85

tributed, to have limited computational requirements and to be86

inherently asynchronous as shown in [31]–[33]. However they87

suffer from low convergence rate since they require the update88

steps to decrease to zero as 1/t (being t the time) therefore as a89

consequence the rate of convergence is sub-exponential. In fact,90

one of the current trends is to design strategies that improve the91

convergence rate of DSMs. For example, a way is to accelerate92

the convergence of subgradient methods by means of multi-93

step approaches, exploiting the history of the past iterations94

to compute the future ones [34]. Another is to use Newton-95

like methods, when additional smoothness assumptions can be96

used. These techniques are based on estimating the Newton97

direction starting from the Laplacian of the communication98

graph. More specifically, distributed Newton techniques have99

been proposed in dual ascent scenarios [35]–[37]. Since the100

Laplacian cannot be computed exactly, the convergence rates101

of these schemes rely on the analysis of inexact Newton meth-102

ods [38]. These Newton methods are shown to have super-103

linear convergence under specific assumptions, but can be104

applied only to specific optimization problems such as network105

flow problems.106

Recently, several alternative approaches to ADMM and DSM107

have appeared. For example, in [39], [40] the authors construct108

contraction mappings by means of cyclic projections of the esti-109

mate of the optimum onto the constraints. A similar idea based110

on contraction maps is used in F-Lipschitz methods [41] but111

it requires additional assumptions on the cost functions. Other112

methods are the control-based approach [42] which exploits113

distributed consensus, the distributed randomized Kaczmarz114

method [43] for quadratic cost functions, and distributed dual115

sub-gradient methods [44].116

Statement of Contributions: Here we propose a distributed117

Newton-Raphson optimization procedure, named Newton-118

Raphson Consensus (NRC), for the exact minimization of119

smooth multidimensional convex separable problems, where120

the global function is a sum of private local costs. With re-121

spect to the classification proposed before, the strategy ex-122

ploits neither Lagrangian formalisms nor Laplacian estimation123

steps. More specifically, it is based on average consensus124

techniques [45] and on the principle of separation of time-125

scales [46, Ch. 11]. The main idea is that agents compute126

and keep updated, by means of average consensus protocols,127

an approximated Newton-Raphson direction that is built from128

suitable Taylor expansions of the local costs. Simultaneously,129

agents move their local guesses towards the Newton-Raphson130

direction. It is proved that, if the costs satisfy some smoothness131

assumptions and the rate of change of the local update steps132

is sufficiently slow to allow the consensus algorithm to con-133

verge, then the NRC algorithm exponentially converges to the134

global minimizer.135

The main contribution of this work is to propose an algorithm136

that extends Newton-Raphson ideas in a distributed setting,137

thus being able to exploit second order information to speed138

up converge rate. By using singular perturbation theory we139

formally show that under suitable assumptions the convergence140

of the algorithm is exponential (linear in logspace). Differently,141

DSM algorithms have sublinear convergence rate even if the142

cost functions are smooth [39], [47], although they are easy to143

implement and can be employed also for non-smooth cost func-144

tions and for constrained optimization. We also show by means 145

of numerical simulations on real-world database benchmarks 146

that the proposed algorithm exhibits faster convergence rates 147

(in number of communications) than standard implementations 148

of distributed ADMM algorithms [12], probably due to the 149

second-order information embedded into the Newton-Raphson 150

consensus. Although we have no theoretical guarantee of the 151

superiority of the proposed algorithmic in terms of convergence 152

rate, these simulations suggest that it is at least a potentially 153

competitive algorithm. Moreover, one of the promising features 154

of the NRC is that it is essentially based on average consen- 155

sus algorithms, for which there exist robust implementations 156

that encompass asynchronous communications, time-varying 157

network topologies [48], directed graphs [49], and packet- 158

losses effects. 159

Structure of the Paper: The paper is organized as follows: 160

Section II collects the notation used through the whole paper, 161

while Section III formulates the considered problem and pro- 162

vides some ancillary results that are then used to study the con- 163

vergence properties of the main algorithm. Section IV proposes 164

the main optimization algorithm, provides convergence results 165

and describes some strategies to trade-off communication and 166

computational complexities with convergence speed. Section V 167

compares, via numerical simulations, the performance of the 168

proposed algorithm with several distributed optimization strate- 169

gies available in the literature. Finally, Section VI collects some 170

final observations and suggests future research directions. We 171

collect all the proofs in the Appendix. 172

II. NOTATION 173

We model the communication network as a graph G = 174

(N , E) whose vertices N := {1, 2, . . . , N} represent the agents 175

and whose edges (i, j) ∈ E represent the available commu- 176

nication links. We assume that the graph is undirected and 177

connected, and that the matrix P ∈ R
N×N is stochastic, i.e., 178

its elements are non-negative, it is s.t. P1l = 1l (where 1l := 179

[1 1 · · · 1]T ∈ R
N ), symmetric, i.e., P = PT and consistent 180

with the graph G, in the sense that each entry pij of P is pij > 0 181

only if (i, j) ∈ E . We recall that if P is stochastic, symmetric, 182

and includes all edges (i.e., pij > 0 if and only if (i, j) ∈ E) 183

then limk→∞ P k = (1/N)1l1lT . Such P ’s are also often re- 184

ferred to as average consensus matrices. We will indicate 185

with ρ(P ) := maxi,λi �=1 |λi(P )| the spectral radius of P , with 186

σ(P ) := 1− ρ(P ) its spectral gap. 187

We use fraction bars to indicate also Hadamard divisions, 188

e.g., if a = [a1, . . . , aN ]T and b = [b1, . . . , bN ]T then a/b := 189

[(a1/b1) · · · (aN/bN )]T . Fraction bars like the previous ones 190

may also indicate pre-multiplication with inverse matrices, i.e., 191

if bi is a matrix then ai/bi indicates b−1
i ai. We indicate with 192

n the dimensionality of the domains of the cost functions, k a 193

discrete time index, t a continuous time index. For notational 194

simplicity we denote differentiation with ∇ operators, so that 195

∇f = ∂f/∂x and ∇2f = ∂2f/∂x2. With a little abuse of 196

notation, we will define χ = (x, Z), where x ∈ R
n and Z ∈ 197

R
�×q as the vector obtained by stacking in a column both the 198

vector x and the vectorized matrix Z. We indicate with ‖ · ‖ 199

Frobenius norms. With an other abuse of notation we also define 200

the norm of the pair χ = (x, Z) where x is a vector and Z a 201

matrix with ‖χ‖2 = ‖x‖2 + ‖Z‖2. 202
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When using plain italic fonts with a subscript (usually i, e.g.,203

xi ∈ R
n) we refer to the local decision variable of the specific204

agent i. When using bold italic fonts, e.g., x, we instead refer to205

the collection of the decision variables of all the various agents,206

e.g., x := [xT
1 , . . . , x

T
N ]

T ∈ R
nN . To indicate special variables207

we will instead consider the following notation:208

x :=
1

N

N∑
i=1

xi R
n

x‖ := 1lN ⊗ x R
nN

x⊥ :=x− x‖
R

nN

As in [46, p. 116], we say that a function V is a Lyapunov209

function for a specific dynamics if V is continuously differen-210

tiable and satisfies V (0)=0, V (x)>0 for x �=0, and V̇ (x)≤0.211

III. PROBLEM FORMULATION AND PRELIMINARY RESULTS212

A. Structure of the Section213

Our main contribution is to characterize the convergence214

properties of the distributed Newton-Raphson (NR) scheme215

proposed in Section IV. In doing so we both exploit standard216

singular perturbation analysis tools [46, Ch. 11] [50] and a set217

of ancillary results, collected for readability in this section.218

The logical flow of these ancillary results is the following:219

Section III-C claims that, under suitable assumptions, forward-220

Euler discretizations of stable continuous dynamics lead to221

stable discrete dynamics. This basic result enables reasoning222

on continuous-time systems. Then, Section III-D and E respec-223

tively claim that single- and multi-agent continuous-time NR224

dynamics satisfy these discretization assumptions. Section III-F225

and G then generalize these dynamics by introducing perturba-226

tion terms that mimic the behavior of the proposed main opti-227

mization algorithm, and characterize their stability properties.228

Summarizing, the ancillary results characterize the stability229

properties of systems that are progressive approximations of the230

dynamics under investigation.231

B. Problem Formulation232

We assume that the N agents of the network are endowed233

with cost functions fi : Rn 
→ R so that234

f : Rn 
→ R, f(x) :=
1

N

N∑
i=1

fi(x) (1)

is a well-defined global cost. We assume that the aim of the235

agents is to cooperate and distributedly compute the minimizer236

of f , namely237

x∗ := arg min
x∈Rn

f(x). (2)

We now enforce the following simplifying assumptions, valid238

throughout the rest of the paper.239

Assumption 1 (Convexity): The local costs fi in (1) are of240

class C3. Moreover the global cost f has bounded positive241

definite Hessian, i.e., 0 < cI ≤ ∇2f(x) ≤ mI for some c, m ∈242

R+ and ∀x ∈ R
n. Moreover, w.l.o.g., we assume f(x∗) = 0,243

c ≤ 1 and m ≥ 1.244

The scalar c is assumed to be known by all the agents a-priori.245

Assumption 1 ensures that x∗ in (2) exists and is unique. The246

strictly positive definite Hessian is moreover a mild sufficient247

condition to guarantee that the minimum x∗ defined in (2) 248

will be globally exponentially stable under the continuous and 249

discrete Newton-Raphson dynamics described in the following 250

Theorem 3. We also notice that, for the subsequent Theorems 2 251

and 3, in principle just the average function f needs to have 252

specific properties, and thus no conditions for the single fi’s are 253

required (that for example might be even non convex). For the 254

convergence of the distributed NR scheme we will nonetheless 255

enforce the more restrictive Assumptions 5 and 9, not presented 256

now for readability issues. In the rest of this section, in order to 257

simplify notation, we will considerer, without loss of generality, 258

the following translated cost functions: 259

f ′
i(x) = fi(x+ x∗), f ′(x) =

1

N

N∑
i=1

f ′
i(x) (3)

so that the origin becomes the minimizer of the averaged cost 260

function f ′(x), i.e., f ′(0) = 0. 261

C. Stability of Discretized Dynamics 262

This subsection aims to show that, under suitable assump- 263

tions, forward-Euler discretization of suitable exponentially 264

stable continuous-time dynamics maintains the same global 265

exponential stability properties. 266

Theorem 2: Let the continuous-time system 267

ẋ = φ(x) (4)

admit x = 0 ∈ R
n as an equilibrium, and let V (x) : Rn 
→ R 268

be a Lyapunov function for (4) for which there exist positive 269

scalars a1, a2, a3, a4 s.t., ∀x ∈ R
n 270

a1I ≤ ∇2V (x) ≤ a2I
∂V (x)
∂x φ(x) ≤ −a3‖x‖2

‖φ(x)‖ ≤ a4‖x‖.

(5a)
(5b)
(5c)

Then 271

a) for system (4) the origin is globally exponentially stable; 272

b) for the following forward-Euler discretization of system 273

(4): 274

x(k + 1) = x(k) + εφ (x(k)) (6)

there exists a positive scalar ε such that for every ε ∈ 275

(0, ε) the origin is globally exponentially stable. 276

D. Stability of Single-Agent NR Dynamics 277

This subsection shows that the results of Section III-C apply 278

to continuous NR dynamics, i.e., that forward-Euler discretiza- 279

tions maintain global exponential stability properties.1 280

Theorem 3: Let 281

φNR(x) := −h′(x)−1∇f ′(x) (7)

be defined by a generic function h′(x) ∈ R
n×n that satisfies 282

the positive definiteness conditions cI ≤ h′(x) = h′(x)T ≤ 283

mI for all x ∈ R
n where c and m are defined in Assumption 1. 284

Let (7) define both the dynamics 285

ẋ =φNR(x) (8)
x(k + 1) =x(k) + εφNR (x(k)) . (9)

1We notice that other asymptotic properties of continuous time NR methods
are available in the literature, e.g., [51], [52].
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Then, under Assumption 1:286

a)287

VNR(x) := f ′(x) (10)

is a Lyapunov function for (8);288

b) there exist positive scalars b1, b2, b3, b4 s.t., ∀x ∈ R
n289  b1I ≤ ∇2VNR(x) ≤ b2I

∂VNR

∂x φNR(x) ≤ −b3‖x‖2
‖φNR(x)‖ ≤ b4‖x‖,

(11a)
(11b)
(11c)

i.e., Theorem 2 applies to dynamics (8) and (9).290

For suitable choices of h′(x) the dynamics (8) corresponds to291

continuous versions of well known descent dynamics. Indeed,292

the correspondences are293

h′(x)=

{∇2f ′(x) → Newton-Raphson descent
diag

[
∇2f ′(x)

]
→ Jacobi descent

I → Gradient descent

(12a)
(12b)
(12c)

where diag[A] is a diagonal matrix containing the main diago-294

nal of A. Note that for every choice of h′(x) as in (12a)–(12c),295

Assumption 1 ensures the hypotheses2 of Theorem 3, therefore296

by combining Theorem 3 with Theorem 2 we are guaranteed297

that both continuous and discrete generalized NR dynamics298

induced by (7) are globally exponentially stable.299

Lemma 4: Under Assumption 1, the origin is a globally300

exponentially stable point for dynamics (8). Moreover there301

exists ε > 0 such that the origin is a globally exponentially302

stable point also for dynamics (9) for all ε < ε.303

The previous lemma and theorems do not require h′(x)304

to be differentiable. However, differentiability may be used305

to linearize the system dynamics and obtain explicit rates of306

convergence. In fact, the linearized dynamics around the origin307

is given by308

F (0) :=
∂φNR(0)

∂x
= −h′(0)−1∇2f ′(0)− ∂h′(0)−1

∂x
∇f ′(0).

In particular, for the NR descent it holds that h′(x) = ∇2f ′(x).309

Thus in this case F (0) = −I , since ∇f ′(0) = 0, and this says310

that the linearized continuous time NR dynamics is ẋ = −x,311

independent of the cost f ′(x) and whose rate of convergence is312

unitary and uniform along any direction.313

E. Stability of Multi-Agent NR Dynamics314

We now generalize (8) by considering N coupled dynamical315

systems that, when starting at the very same initial condition,316

behave like N decoupled systems (8). This novel dynamics317

is the core of the slow-dynamics embedded in the main algo-318

rithm presented in Section IV. In this section we also include319

additional assumptions to show that the generalization of (8)320

presented here preserves global exponential stability and some321

other additional properties.322

2For the Jacobi descent, clearly min‖x‖=1 x
T diag[∇2f ′(x)]x =

minx∈{e1,...,en} xT diag[∇2f ′(x)]x = minx∈{e1,...,en} xT∇2f ′(x)x ≥
min‖x‖=1 x

T∇2f ′(x)x = c, where ei is the n-dimensional vector with all
zeros except for a one in the i-th entry.

To this aim we introduce some additional notation: let h′
i(x) : 323

R
n 
→ R

n×n, i = 1, . . . , N be defined according to one of the 324

possible three cases 325

h′
i(x) =

{∇2f ′
i(x)

diag
[
∇2f ′

i(x)
]

I

(13a)
(13b)
(13c)

so that h′
i(x) = h′

i(x)
T for all x. Moreover let 326

h′(x) := [h′
1(x1), . . . , h

′
N (xN )]

T
R

nN 
→ R
nN×n

h′(x) :=
1

N

N∑
i=1

h′
i(xi) R

nN 
→ R
n×n

h′(x) :=
1

N

N∑
i=1

h′
i(x) R

n 
→ R
n×n

be additional composite functions defined starting from the 327

h′
i’s (recall that x := [xT

1 , . . . , x
T
N ]

T ∈ R
nN and that x := 328

(1/N)
∑N

i=1 xi ∈ R
n). Let moreover 329

g′i(x) := h′
i(x)x−∇f ′

i(x) R
n 
→ R

n (14)

and g′(x), g′(x), g′(x) be defined accordingly as for h′
i. 330

The definitions of h′
i and g′i are instrumental to generalize the 331

NR dynamics (8) to the distributed case. Indeed, let 332

ψ(x) := h′(x)−1 g′(x) R
nN 
→ R

n (15)

(with the existence of h′(x)−1 guaranteed by the following 333

Assumption 5). It is easy to verify that the previous functions 334

satisfy the following properties: 335
h′(x‖) = h′(x)

g′(x‖) = g′(x) = h′(x)x−∇f ′(x)

ψ(x‖) = x− h′(x)−1∇f ′(x).

(16a)
(16b)
(16c)

Consider then 336

ẋ = φPNR(x) := −x+ 1lN ⊗ ψ(x) (17)

that can be also equivalently written as 337

ẋi = −xi + ψ(x), i = 1, . . . , N

i.e., as the combination of N independent dynamical systems 338

that are driven by the same forcing term ψ(x). 339

As mentioned above, this dynamics embeds the centralized 340

generalized NR dynamics since, under identical initial condi- 341

tions xi(0) = x(0) ∈ R
n for all i, the trajectories coincide, i.e., 342

xi(t) = x(t), ∀i, ∀t ≥ 0. Moreover, due to (16c) 343

ẋ = − x+ ψ(1lN ⊗ x)

= − x+ x− h′(x)−1∇f ′(x) = φNR(x) (18)

i.e., we obtain dynamics (7), that is, thanks to Theorem 3 and 344

the assumption that h′(x) is invertible, globally exponentially 345

stable. 346

The question is then whether dynamics (17) is exponentially 347

stable also in the general case where the xi(0)’s may not be 348

identical. To characterize this case we assume some additional 349

global properties. 350
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Assumption 5 (Global Properties): The local costs f ′
1, . . . ,351

f ′
N in (1) are s.t. there exist positive scalars mg , ag , ah, aψ s.t.,352

∀ x, x′ ∈ R
n and ∀ x, x′ ∈ R

nN353 
cI ≤ h′(x) ≤ mI∥∥g′(x)∥∥ ≤ mg

‖g′i(x)− g′i(x
′)‖ ≤ ag ‖x− x′‖

‖h′
i(x)− h′

i(x
′)‖ ≤ ah‖x− x′‖

‖ψ(x)− ψ(x′)‖ ≤ aψ‖x− x′‖

(19a)
(19b)
(19c)
(19d)
(19e)

with c and m from Assumption 1.354

Note that Assumption 5 implies355 
∥∥g′(x)− g′(x′)

∥∥ ≤ ag‖x− x′‖∥∥h′(x)− h′(x′)
∥∥ ≤ ah‖x− x′‖

‖g′(x)− g′(x′)‖ ≤ ag‖x− x′‖
‖h′(x)− h′(x′)‖ ≤ ah‖x− x′‖.

(20a)
(20b)
(20c)
(20d)

Using the previous assumptions we can now prove global356

stability of dynamics (17).357

Theorem 6: Under Assumptions 1 and 5, and for a suitable358

positive scalar η,359

a)360

VPNR(x) :=VNR(x)+
1

2
η‖x⊥‖2=f ′(x)+

1

2
η‖x⊥‖2 (21)

is a Lyapunov function for (17);361

b) there exist positive scalars b5, b6, b7, b8 s.t., ∀x ∈ R
nN362  b5I ≤ ∇2VPNR(x) ≤ b6I

∂VPNR

∂x φPNR(x) ≤ −b7‖x‖2
‖φPNR(x)‖ ≤ b8‖x‖.

(22a)
(22b)
(22c)

As in Lemma 4, combining Theorem 6 with Theorem 2 it is363

possible to claim that (17) and its discrete-time counterpart are364

globally exponentially stable.365

F. Multi-Agent NR Dynamics Under Vanishing Perturbations366

We now aim to generalize the dynamics φPNR(x) by consid-367

ering some perturbation term, that will be described by the vari-368

able χ. Let then χy := (χy
1 , . . . , χ

y
N ) where χy

i ∈ R
n, χz :=369

(χz
1, . . . , χ

z
N ) where χz

i = (χz
i )

T ∈ R
n×n, and χ := (χy,χz).370

We also define the operator [·]c : RnN×n 
→ R
nN×n, which371

indicates the component-wise matrix-operation372

[z]c =

 z1
...
zN


c

:=

 z′1
...
z′N

 z′i =

{
zi if zi ≥ c

2I
c
2I otherwise. (23)

Consider then the perturbed version of the multi-agent NR373

dynamics (17)374

ẋ=φx(x,χ) :=−x−1lN⊗ x∗+
χy+1lN⊗

(
g′(x)+h′(x)x∗)[

χz+1lN⊗ h′(x)
]
c

(24)

where the division is a Hadamard division, as recalled in375

Section II. Direct inspection of dynamics (24) then shows that376

φx(x,0) = φPNR(x). (25)

The next lemma provides perturbations interconnection bounds377

that will be used in Theorem 12.378

Lemma 7: Under Assumptions 1 and 5 there exist positive 379

scalars ax, a∆ s.t., for all x and χ 380{
‖φx(x,χ)‖ ≤ ax (‖x‖+ ‖χ‖)
‖φx(x,χ)− φPNR(x)‖ ≤ a∆‖χ‖.

(26a)
(26b)

G. Multi-Agent NR Dynamics Under 381

Non-Vanishing Perturbations 382

Let us now consider some additional properties of the flow 383

(24) for some specific non-vanishing perturbation. Consider 384

then the perturbations ξy ∈ R
n and ξz ∈ R

n×n, and their multi- 385

agents versions ξy = 1lN ⊗ ξy , ξy = 1lN ⊗ ξz . Consider also 386

the shorthand ξ = (ξy, ξz). The equilibrium points of the dy- 387

namics induced by φx(x, ξ) are characterized by the following 388

theorem. 389

Theorem 8: Let ξy∈R
n, ξz∈R

n×n, ξ=(ξy, ξz), ξy=1lN⊗ 390

ξy , ξz = 1lN ⊗ ξz , ξ = (ξy, ξz), and consider the equation 391

φx(x, ξ) = 0

defining the equilibrium points of the dynamics ẋ = φx(x, ξ). 392

Then, under Assumptions 1 and 5 there exist a positive scalar 393

r > 0 and a unique continuously differentiable function xeq : 394

Br → R
nN where Br := {ξ | ‖ξ‖ ≤ r} such that 395

φx (x
eq(ξ), ξ) = 0, xeq(0) = 0. (27)

Moreover, xeq(ξ) = 1lN ⊗ xeq(ξ), with 396

xeq(ξ)=
(
h′(xeq(ξ))+ξz

)−1(
g′ (xeq(ξ))+ξy−ξzx∗

)
. (28)

Theorem 8 allows to define 397

φ′
x(x, ξ) := φx (x+ 1lN ⊗ xeq(ξ), ξ) (29)

and the corresponding dynamics 398

ẋ = φ′
x(x, ξ) (30)

which corresponds to the translated version of the original 399

perturbed system φx(x, ξ), which has now the property that the 400

origin is an equilibrium point, i.e., φ′
x(0, ξ) = 0, ∀‖ξ‖ ≤ r. 401

To prove the global exponential stability of (30) we need the 402

flow φ′
x to satisfy a global Lipschitz condition. 403

Assumption 9 (Global Lipschitz Perturbation): There exist 404

positive scalars aξ and r such that, for all x ∈ R
nN and ξ 405

satisfying ‖ξ‖ ≤ r 406

‖φ′
x(x, ξ)− φ′

x(x, 0)‖ ≤ aξ‖ξ‖‖x‖.

With these assumptions we can prove that the origin is a 407

globally exponentially stable equilibrium for dynamics (30). 408

Theorem 10: Under Assumptions 1, 5, and 9, 409

a) VPNR(x) defined in (21) is a Lyapunov function for (30); 410

b) there exist positive scalars r, b′7, b′8 s.t., for all x ∈ R
nN 411

and ξ satisfying ‖ξ‖ ≤ r 412{
∂VPNR

∂x φ′
x(x, ξ) ≤ −b′7‖x‖2

‖φ′
x(x, ξ)‖ ≤ b′8‖x‖.

(31a)
(31b)

Again, as in Lemma 4, combining Theorem 10 with 413

Theorem 2 it is possible to claim that (30) and its discrete-time 414

counterpart are globally exponentially stable. 415
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H. Quadratic Functions416

Before presenting the main algorithm, we show that417

quadratic costs satisfy all the previous assumptions. In fact, let418

us consider then419

fi(x) =
1

2
(x− di)

TAi(x− di) + ei, Ai = AT
i .

Based on this definition we have the following result.420

Theorem 11: Quadratic costs that satisfy421

A :=
∑
i

Ai > 0

satisfy Assumptions 1, 5, and 9 for h′
i(x) = ∇2f ′

i(x).422

IV. NEWTON-RAPHSON CONSENSUS423

In this section we provide an algorithm to distributively424

compute the minimizer of the function x∗ defined in (2).425

The algorithm will be shown to converge to x∗ even if x∗ �= 0.426

The proof of convergence will be based on the results derived427

in the previous sections via a suitable translation of the argu-428

ment of the cost functions, which basically reduces the problem429

to the special case x∗ = 0.430

Consider then Algorithm 1, where g(x(−1)) = 0 and431

h(x(−1)) = 0 in the initialization step should be intended as432

initialization of suitable registers and not as operations involv-433

ing the quantity x(−1).434

Algorithm 1 Fast Newton-Raphson Consensus (NRC)435

(storage allocation and constraints on the parameters)436

1: xi(k), yi(k) ∈ R
n and zi(k) ∈ R

n×n for all k and i =437

1, . . . , N ; ε ∈ (0, 1], c > 0438

(initialization)439

2: xi(0)=0; yi(0)=gi(xi(−1))=0; zi(0)=hi(xi(−1))=0440

(main algorithm)441

3: for k = 1, 2, . . . do442

4: for i = 1, . . . , N do443

5: xi(k)=(1−ε)xi(k−1)+ε[zi(k−1)]−1
c yi(k−1)444

6: yi(k) =
∑N

j=1 pij(yj(k − 1) + gj(xj(k − 1))−445

gj(xj(k − 2)))446

7: zi(k) =
∑N

j=1 pij(zj(k − 1) + hj(xj(k − 1))−447

hj(xj(k − 2)))448

8: end for449

9: end for450

Intuitively, the algorithm functions as follows: if the dynam-451

ics of the xi(k)s is sufficiently slow w.r.t. the dynamics of the452

yi(k)sand zi(k)s, then the two latter quantities tend to reach453

consensus. Then, the more these quantities reach consensus,454

the more the products [zi(k)]−1
c yi(k) exhibit these two specific455

characteristics: i) being the same among the various agent;456

ii) representing Newton descent directions. Thus, the more the457

yi(k)s and zi(k)s in Algorithm 1 are sufficiently close, the458

more the various xi(k)s are driven by the same forcing term,459

that makes them converge to the same value, equal to the460

optimum x∗.461

We now characterize the convergence properties of 462

Algorithm 1. Let us define 463

ξy :=
1

N

N∑
i=1

(yi(0)− gi (xi(−1)))

ξz :=
1

N

N∑
i=1

(zi(0)− hi (xi(−1)))

then we have the following theorem. 464

Theorem 12: Consider the dynamics defined by Algorithm 1 465

with possibly nonzero initial conditions. If ξy = 0 and ξz = 0, 466

then under Assumptions 1 and 5 there exists a positive scalar 467

ε > 0 such that Theorem 2 holds, i.e., the algorithm can be 468

considered a forward-Euler discretization of a globally expo- 469

nentially stable continuous dynamics. Thus the local estimates 470

xi(k) produced by the algorithm exponentially converge to the 471

global minimizer, i.e., 472

lim
k→∞

xi(k) = x∗ ∀i = 1, . . . , N

for all ε ∈ (0, ε) and xi(0) ∈ R
n. 473

Consider now that, due to finite-precision issues, the quan- 474

tities ξy and ξz may be non-null. Non-null initial ξy and ξz 475

will make the proposed algorithm converge to a point that, 476

in general does not coincide with the global optimum x∗. 477

Nonetheless in this case the computed solution, as a function 478

of the initial conditions, is a smooth function and thus small 479

errors in the initial conditions do not produce dramatic errors in 480

the computation of the optimum. 481

Theorem 13: Consider the dynamics defined by Algorithm 1 482

with possibly nonzero initial ξy and ξz but generic xi(0)’s. 483

Under Assumptions 1, 5, and 9 there exist positive scalars a, r, 484

ε and a continuously differentiable function Ψ : Rn × R
n×n 
→ 485

R
n satisfying 486

‖Ψ(ξy, ξz)− x∗‖ ≤ a (‖ξy‖+ ‖ξz‖)

s.t. the local estimates exponentially converge to it, i.e., 487

lim
k→∞

xi(k) = Ψ(ξy, ξz) ∀i = 1, . . . , N

for all ε ∈ (0, ε), initial conditions xi(0) ∈ R
n and (‖ξy‖+ 488

‖ξz‖) ≤ r. 489

We notice that Theorem 13 ensures global convergence 490

properties w.r.t. the initial conditions xi(0)’s by requiring 491

Assumptions 1, 5, and 9, while for the same convergence 492

properties Theorem 12 requires only Assumptions 1 and 5. The 493

difference is that Theorem 13 considers a non-null perturbation 494

ξ and Assumption 9 is needed to cope with this additional 495

perturbation term. 496

The Assumptions 1, 5, and 9 are not needed if only local 497

convergence is ought. In fact, local differentiability, and there- 498

fore local Lipschitzianity, of the cost functions fi(x) at the 499

minimizer x∗ is sufficient to guarantee that Assumptions 5 and 9 500

are locally valid. As so, the proof that the equilibrium point is 501

a locally exponentially stable point is exactly the same, with 502

the difference that all bounds and inequalities are local. This 503

observation is summarized in the following theorem. 504
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Theorem 14: Consider the dynamics defined by Algorithm 1505

with possibly nonzero initial conditions. Under the assumptions506

that the fi’s are C3 and that ∇2f(x∗) ≥ cI , there exist positive507

scalars a, r, ε and a continuously differentiable function Ψ :508

R
n × R

n×n 
→ R
n s.t.509

lim
k→∞

xi(k) = Ψ(ξy, ξz) ∀i = 1, . . . , N

and satisfying510

‖Ψ(ξy, ξz)− x∗‖ ≤ a (‖ξy‖+ ‖ξz‖)

for all ε ∈ (0, ε) and initial conditions511

‖xi(0)− x∗‖ ≤ r,
∥∥yi − g(x∗)

∥∥ ≤ r,
∥∥∥zi − h(x∗)

∥∥∥ ≤ r∥∥gi (xi(−1))− g(x∗)
∥∥ ≤ r,

∥∥∥hi (xi(−1))− h(x∗)
∥∥∥ ≤ r.

Numerical simulations suggest that the algorithm is robust512

w.r.t. numerical errors and quantization noise. We also notice513

that Theorem 12 guarantees the existence of a critical value ε514

but does not provide indications on its value. This is a known515

issue in all the systems dealing with separation of time scales.516

A standard rule of thumb is then to let the rate of convergence517

of the fast dynamics be sufficiently faster than the one of the518

slow dynamics, typically 2–10 times faster. In our algorithm the519

fast dynamics inherits the rate of convergence of the consensus520

matrix P , given by its spectral gap σ(P ), i.e., its spectral radius521

ρ(P ) = 1− σ(P ). The rate of convergence of the slow dynam-522

ics is instead governed by (18), which is nonlinear and therefore523

possibly depending on the initial conditions. However, close to524

the equilibrium point the dynamic behavior is approximately525

given by ẋ(t) ≈ −(x(t)− x∗), thus, since xi(k)≈x(εk),526

then the convergence rate of the algorithm approximately given527

by 1− ε.528

Thus we aim to let 1− ρ(P ) � 1− (1− ε), which provides529

the rule of thumb530

ε � σ(P ) (32)

which is suitable for generic cost functions. We then notice531

that, although the spectral gap σ(P ) might not be known in532

advance, it is possible to distributedly estimate it, see, e.g., [53].533

However, such rule of thumb might be very conservative. In534

fact, if all the fi’s are quadratic and are, w.l.o.g. s.t. ∇2fi ≥ cI ,535

then one can set ε = 1 and neglect the thresholding [·]c, so that536

the procedure reduces to537

x(k + 1) =
y(k)

z(k)
y(k + 1) = (P ⊗ In)y(k)
z(k + 1) = (P ⊗ In)z(k) (33)

where x(k) := [xT
1 (k), . . . , x

T
N (k)]

T
, y(k) := [yT1 (k), . . . ,538

yTN (k)]T , z(k) := [z1(k), . . . , zN (k)]T . Thus:539

Theorem 15: Consider Algorithm 1 with arbitrary initial540

conditions xi(0), quadratic cost functions fi = (1/2)(x−541

di)
TAi(x− di) with Ai > 0 and ε = 1. Then ‖xi(k)− x∗‖ ≤542

α(ρ(P ))k for all k, i and for a suitable positive α.543

Thus, if the cost functions are close to be quadratic then the544

overall rate of convergence is limited by the rate of convergence545

of the embedded consensus algorithm. Moreover, the values of546

ε that still guarantee convergence can be much larger than those547

dictated by the rule of thumb (32).548

TABLE I
COMPUTATIONAL, COMMUNICATION, AND MEMORY COSTS

OF NRC, JC, GDC PER SINGLE UNIT AND SINGLE STEP

A. On the Selection of the Structure of h(x) 549

As introduced in Section III-D, by selecting different struc- 550

tures for hi(x) one can obtain different procedures with 551

different convergence properties and different computational/ 552

communication requirements. Plausible choices for hi are the 553

ones in (13c), and the correspondences are the following: 554

• hi(x) = ∇2fi(x) → Newton-Raphson Consensus (NRC): 555

in this case it is possible to rewrite the main algorithm and 556

show that, for sufficiently small ε, xi(k) ≈ x(εk), where 557

x(t) evolves according to the continuous-time Newton- 558

Raphson dynamics 559

ẋ(t) = −
[
∇2f (x(t))

]−1 ∇f (x(t)) .

• hi(x) = diag[∇2fi(x)] → Jocobi Consensus (JC): choice 560

hi(x) = ∇2fi(x) requires agents to exchange informa- 561

tion on O(n2) scalars, and this could pose problems 562

under heavy communication bandwidth constraints and 563

large n’s. Choice hi(x) = diag[∇2fi(x)] instead reduces 564

the amount of information to be exchanged via the 565

underlying diagonalization process, also called Jacobi 566

approximation.3 In this case, for sufficiently small ε, 567

xi(k) ≈ x(εk), where x(t) evolves according to the 568

continuous-time dynamics 569

ẋ(t) = −
(
diag

[
∇2f (x(t))

])−1 ∇f (x(t))

which can be shown to converge to the global optimum x∗ 570

with a convergence rate that in general is slower than the 571

Newton-Raphson when the global cost function is skewed. 572

• hi(x) = I → Gradient Descent Consensus (GDC): this 573

choice is motivated in frameworks where the computation 574

of the local second derivatives (∂2fi/∂x
2
m)|x is expensive 575

(with xm indicating here the m-th component of x), 576

or where the second derivatives simply might not be 577

continuous. With this choice the main algorithm reduces 578

to a distributed gradient-descent procedure. In fact, for 579

sufficiently small ε, xi(k) ≈ x(εk) with x(t) evolving 580

according to the continuous-time dynamics 581

ẋ(t) = −∇f (x(t))

which one again is guaranteed to converge to the global 582

optimum x∗. 583

The following Table I summarizes the various costs of the 584

previously proposed strategies. 585

We remark that ε in Theorem 12 depends also on the par- 586

ticular choice for hi. The list of choices for hi given above 587

3In centralized approaches, nulling the Hessian’s off-diagonal terms is a
well-known procedure, see, e.g., [54]. See also [36], [55] for other Jacobi
algorithms with different communication structures.
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Fig. 1. Temporal evolution of system (43) for different values of ε, with
N = 30. The black dotted line indicates x∗. The black solid line indicates the
slow dynamics x(εk) of Equation (18). As ε decreases, the difference between
the time scale of the slow and fast dynamics increases, and the local states xi(k)
converge to the manifold of x(εk).

is not exhaustive. For example, future directions are to imple-588

ment distributed quasi-Newton procedures. To this regard, we589

recall that approximations of the Hessians that do not maintain590

symmetry and positive definiteness or are bad conditioned591

require additional modification steps, e.g., through Cholesky592

factorizations [56].593

Finally, we notice that in scalar scenarios JC and NRC are594

equivalent, while GDC corresponds to algorithms requiring just595

the knowledge of first derivatives.596

V. NUMERICAL EXAMPLES597

In Section V-A we analyze the effects of different choices598

of ε on the NRC on regular graphs and exponential cost599

functions. We then propose two machine learning problems in600

Section V-B, used in Section V-C and D, and numerically com-601

pare the convergence performance of the NRC, JC, GDC algo-602

rithms and other distributed convex optimization algorithms on603

random geometric graphs.604

Notice that we will use cost functions that may not satisfy605

Assumptions 1, 5, and 9 to highlight the fact that the algorithm606

seems to have favorable numerical properties and large basins607

of stability even if the assumptions needed for global stability608

are not satisfied.609

A. Effects of the Choice of ε610

Consider a ring network of S = 30 agents that communicate611

only to their left and right neighbors through the consensus612

matrix613

P =


0.5 0.25 0.25
0.25 0.5 0.25

. . .
. . .

. . .
0.25 0.5 0.25

0.25 0.25 0.5

 (34)

so that the spectral radius ρ(P ) ≈ 0.99, implying a spectral gap614

σ(P ) ≈ 0.01. Consider also scalar costs of the form fi(x) =615

cie
aix + die

−bix, i = 1, . . . , N , with ai, bi ∼ U [0, 0.2], ci,616

di ∼ U [0, 1] and where U indicates the uniform distribution.617

Fig. 1 compares the evolution of the local states xi of the618

continuous system (43) for different values of ε. When ε is619

not sufficiently small, then the trajectories of xi(t) are different620

even if they all start from the same initial condition xi(0) = 0.621

As ε decreases, the difference between the two time scales be-622

comes more evident and all the trajectories xi(k) become closer623

to the trajectory given by the slow NR dynamics x(εk) given in624

(18) and guaranteed to converge to the global optimum x∗.625

Fig. 2. Characterization of the dependency of the performance of Algorithm 1
on the initial conditions. In all the experiments ε = 0.01 and N = 30.
(a) Time evolution of the local states xi(k) with v(0) = w(0) = y(0) =
z(0) = 0 and xi(0) ∼ U [−2, 2]. (b) Empirical distribution of the errors
xi(+∞)− x∗ under artificially perturbed initial conditions α(0), β(0) ∼
U [−σ, σ] for different values of σ.

In Fig. 2 we address the robustness of the proposed algorithm 626

w.r.t. the choice of the initial conditions. In particular, Fig. 2(a) 627

shows that if α = β = 0 then the local states xi(t) converge to 628

the optimum x∗ for arbitrary initial conditions xi(0). Fig. 2(b) 629

considers, besides different initial conditions xi(0), also per- 630

turbed initial conditions v(0), w(0), y(0), z(0) leading to non 631

null α’s and β’s. More precisely we apply Algorithm 1 to dif- 632

ferent random initial conditions s.t. α, β ∼ U [−σ, σ]. Fig. 2(b) 633

shows the boxplots of the errors xi(+∞)− x∗ for different σ’s 634

based on 300 Monte Carlo runs with ε = 0.01 and N = 30. 635

B. Optimization Problems 636

The first problem considered is the distributed training of a 637

Binomial-Deviance based classifier, to be used, e.g., for spam- 638

nonspam classification tasks [57, Ch. 10.5]. More precisely, we 639

consider a database of emails E, where j is the email index, 640

yj = −1, 1 denotes if the email j is considered spam or not, 641

χj ∈ R
n−1 numerically summarizes the n− 1 features of the 642

j-th email (how many times the words “money”, “dollars”, etc., 643

appear). If the E emails come from different users that do not 644

want to disclose their private information, then it is meaningful 645

to exploit the distributed optimization algorithms described in 646

the previous sections. More specifically, letting x = (x′, x0) ∈ 647

R
n−1 × R represents a generic classification hyperplane, train- 648

ing a Binomial-Deviance based classifier corresponds to solve a 649

distributed optimization problem where the local cost functions 650

are given by 651

fi(x) :=
∑
j∈Ei

log
(
1+exp

(
−yj

(
χT
j x

′+x0

)))
+γ ‖x′‖22 (35)

where Ei is the set of emails available to agent i, E = ∪N
i=1Ei, 652

and γ is a global regularization parameter. In the following 653

numerical experiments we consider |E| = 5000 emails from 654

the spam-nonspam UCI repository, available at http://archive. 655

ics.uci.edu/ml/datasets/Spambase, randomly assigned to 30 dif- 656

ferent users communicating as in graph of Fig. 4. For each email 657

we consider 3 features (the frequency of words “make”, “ad- 658

dress”, “all”) so that the corresponding optimization problem is 659

4-dimensional. 660

The second problem considered is a regression problem 661

inspired by the UCI Housing dataset available at http://archive. 662

ics.uci.edu/ml/datasets/Housing. In this task, an example χj ∈ 663

R
n−1 is a vector representing some features of a house (e.g., 664

http://archive.ics.uci.edu/ml/datasets/Spambase
http://archive.ics.uci.edu/ml/datasets/Spambase
http://archive.ics.uci.edu/ml/datasets/Housing
http://archive.ics.uci.edu/ml/datasets/Housing
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Fig. 3. Convergence properties of Algorithm 1 for the problems described in
Section V-B and for different choices of hi(·). Choice hi(x) = ∇2fi(x) cor-
responds to the NRC algorithm, hi(x) = diag[∇2fi(x)] to the JC, hi(x) = I
to the GDC. (a) Relative MSE at a given time k as a function of the parameter
ε for classification problem (35). (b) Relative MSE as a function of the time k,
with the parameter ε chosen as the best from Fig. 3(a) for classification problem
(35). (c) Relative MSE at a given time k as a function of the parameter ε for
regression problem (36). (d) Relative MSE as a function of the time k, with the
parameter ε chosen as the best from Fig. 3(c) for regression problem (36).

per capita crime rate by town, index of accessibility to radial665

highways, etc.), and yj ∈ R denotes the corresponding median666

monetary value of of the house. The objective is to obtain a667

predictor of house value based on these data. Similarly as the668

previous example, if the datasets come from different users669

that do not want to disclose their private information, then it670

is meaningful to exploit the distributed optimization algorithms671

described in the previous sections. This problem can be formu-672

lated as a convex regression problem on the local costs673

fi(x) :=
∑
j∈Ei

(
yj − χT

j x
′ − x0

)2∣∣yj − χT
j x

′ − x0

∣∣+ β
+ γ ‖x′‖22 (36)

where x = (x′, x∗
0) ∈ R

n−1 × R is the vector of coefficient674

for the linear predictor ŷ = χTx′ + x0 and γ is a common675

regularization parameter. The loss function (·)2/(| · |+ β) cor-676

responds to a smooth C2 version of the Huber robust loss, a677

loss that is usually employed to minimize the effects of outliers.678

In our case β dictates for which arguments the loss is pseudo-679

linear or pseudo-quadratic and has been manually chosen to680

minimize the effects of outliers. In our experiments we used681

four features, β = 50, γ = 1, and |E| = 506 total number of682

examples in the dataset randomly assigned to the N = 30 users683

communicating as in the graph of Fig. 4.684

In both the previous problems the optimum, in the following685

indicated for simplicity with x∗, has been computed with a686

centralized NR with the termination rule “stop when in the last687

5 steps the norm of the guessed x∗ changed less than 10−9%”.688

C. Comparison of the NRC, JC and GDC Algorithms689

In Fig. 3 we analyze the performance of the three proposed690

NRC, JC and GDC algorithms defined by the various choices691

Fig. 4. Random geometric graph exploited in the simulations relative to the
optimization problem (35). For this graph ρ(P ) ≈ 0.9338, with P the matrix
of Metropolis weights.

for hi(x) in Algorithm 1 in terms of the relative MSE 692

MSE(k) :=
1

N

N∑
i=1

‖xi(k)− x∗‖2 /‖x∗‖2

for the classification and regression optimization problem de- 693

scribed above. The consensus matrix P has been by selecting 694

the Metropolis-Hastings weights which are consistent with the 695

communication graph [58]. Panels 3(a) and 3(c) report the MSE 696

obtained at a specific iteration (k = 40) by the various algo- 697

rithms, as a function of ε. These plots thus inspect the sensitivity 698

w.r.t. the choice of the tuning parameters. Consistently with the 699

theorems in the previous section, the GDC and JC algorithms 700

are stable only for ε sufficiently small, while NRC exhibit much 701

larger robustness and best performance for ε = 1. Panels 3(b) 702

and 3(d) instead report the evolutions of the relative MSE as a 703

function of the number of iterations k for the optimally tuned 704

algorithms. 705

We notice that the differences between NRC and JC are evi- 706

dent but not resounding, due to the fact that the Jacobi approxi- 707

mations are in this case a good approximation of the analytical 708

Hessians. Conversely, GDC presents a slower convergence rate 709

which is a known drawback of gradient descent algorithms. 710

D. Comparisons With Other Distributed Convex 711

Optimization Algorithms 712

We now compare Algorithm 1 and its accelerated version, 713

referred as Fast Newton-Raphson Consensus (FNRC) and de- 714

scribed in detail below in Algorithm 2), with three popular 715

distributed convex optimization methods, namely the DSM, the 716

Distributed Control Method (DCM) and the ADMM, described 717

respectively in Algorithm 3, 4, and 5. The following discussion 718

provides some details about these strategies. 719

Algorithm 2 Fast Newton-Raphson Consensus 720

1: storage allocation, constraints on the parameters and 721

initialization as in Algorithm 1 722

2: for k = 1, 2, . . . do 723

3: for i = 1, . . . , N do 724

4: xi(k)=(1−ε)xi(k−1)+ε[zi(k−1)]−1
c yi(k−1) 725

5: ỹi(k)=yi(k−1)+(1/ϕ)gi(xi(k−1))−gi(xi(k− 726

2))− ((1− ϕ)/ϕ)gi(xi(k − 3)) 727
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6: z̃i(k)=zi(k−1)+(1/ϕ)hi(xi(k−1))−hi(xi(k−728

2))− ((1− ϕ)/ϕ)hi(xi(k − 3))729

7: yi(k) = ϕ
∑N

j=1(pij ỹj(k)) + (1− ϕ)yi(k − 2)730

8: zi(k) = ϕ
∑N

j=1(pij z̃j(k)) + (1− ϕ)zi(k − 2)731

9: end for732

10: end for733

Algorithm 3 DSM [30]734

(storage allocation and constraints onparameters)735

1: xi(k) ∈ R
n for all i. � ∈ R+736

(initialization)737

2: xi(0) = 0738

(main algorithm)739

3: for k = 0, 1, . . . do740

4: for i = 1, . . . , N do741

5: xi(k+1)=
∑N

j=1 pij(xj(k)−(�/k)∇fj(xj(k)))742

6: end for743

7: end for744

Algorithm 4 DCM [42]745

(storage allocation and constraints onparameters)746

1: xi(k), zi(k) ∈ R
n, for all i. µ, ν ∈ R+747

(initialization)748

2: xi(0) = zi(0) = 0 for all i749

(main algorithm)750

3: for k = 0, 1, . . . do751

4: for i = 1, . . . , N do752

5: zi(k + 1) = zi(k) + µ
∑

j∈Ni
(xi(k)− xj(k))753

6: xi(k + 1) = xi(k) + µ
∑

j∈Ni
(xj(k)− xi(k)) +754

µ
∑

j∈Ni
(zj(k)− zi(k))− µν∇fi(xi(k))755

7: end for756

8: end for757

Algorithm 5 ADMM [7, pp. 253–261]758

(storage allocation and constraints onparameters)759

1: xi(k), z(i,j)(k), y(i,j)(k) ∈ R
n, δ ∈ (0, 1)760

(initialization)761

2: xi(k) = z(i,j)(k) = y(i,j)(k) = 0762

(main algorithm)763

3: for k = 0, 1, . . . do764

4: for i = 1, . . . , N do765

5: xi(k + 1) = argminxi
Li(xi, k)766

6: for j ∈ Ni do767

7: z(i,j)(k + 1) = (1/2δ)(y(i,j)(k)+y(j,i)(k)) +768

(1/2)(xi(k + 1) + xj(k + 1))769

8: y(i,j)(k + 1) = y(i,j)(k) + δ(xi(k + 1)−770

z(i,j)(k + 1))771

9: end for772

10: end for773

11: end for774

• FNRC is an accelerated version of Algorithm 1 that in-775

herits the structure of the so called second order diffusive776

schedules, see, e.g., [59], and exploits an additional level 777

of memory to speed up the convergence properties of the 778

consensus strategy. Here the weights multiplying the gi’s 779

and hi’s are necessary to guarantee exact tracking of the 780

current average, i.e.,
∑

i yi(k)=
∑

i gi(x(k−1)) for all k. 781

As suggested in [59], we set the ϕ that weights the gra- 782

dient and the memory to ϕ = 2/(1 +
√

1− ρ(P )2). This 783

guarantees second order diffusive schedules to be faster 784

than first order ones (even if this does not automatically 785

imply the FNRC to be faster than the NRC). This setting 786

can be considered a valid heuristic to be used when ρ(P ) 787

is known. For the graph in Fig. 4, ϕ ≈ 1.4730. 788

• DSM, as proposed in [30], alternates consensus steps on 789

the current estimated global minimum xi(k) with subgra- 790

dient updates of each xi(k) towards the local minimum. To 791

guarantee the convergence, the amplitude of the local sub- 792

gradient steps should appropriately decrease. Algorithm 3 793

presents a synchronous DSM implementation, where � is 794

a tuning parameter and P is the matrix of Metropolis- 795

Hastings weights. 796

• DCM, as proposed in [42], differentiates from the gradient 797

searching because it forces the states to the global opti- 798

mum by controlling the subgradient of the global cost. 799

This approach views the subgradient as an input/output 800

map and uses small gain theorems to guarantee the conver- 801

gence property of the system. Again, each agents i locally 802

computes and exchanges information with its neighbors, 803

collected in the set Ni := {j | (i, j) ∈ E}. DCM is sum- 804

marized in Algorithm 4, where µ, ν > 0 are parameters 805

to be designed to ensure the stability property of the 806

system. Specifically, µ is chosen in the interval 0 < µ < 807

2/(2maxi={1,...,N} |Ni|+ 1) to bound the induced gain 808

of the subgradients. Also here the parameters have been 809

manually tuned for best convergence rates. 810

• ADMM, instead, requires the augmentation of the system 811

through additional constraints that do not change the op- 812

timal solution but allow the Lagrangian formalism. There 813

exist different implementations of ADMM in distributed 814

contexts, see, e.g., [7], [12, pp. 253–261], [60]. For sim- 815

plicity we consider the following formulation: 816

min
x1,...,xN

N∑
i=1

fi(xi)

s.t. z(i,j) = xi, ∀i ∈ N , ∀(i, j) ∈ E

where the auxiliary variables z(i,j) correspond to the dif- 817

ferent links in the network, and where the local Aug- 818

mented Lagrangian is given by 819

Li(xi, k) :=fi(xi)+
∑
j∈Ni

y(i,j)
(
xi−z(i,j)

)
+
∑
∈Ni

δ

2

∥∥xi−z(i,j)
∥∥2

with δ a tuning parameter (see [61] for a discussion on how 820

to tune it) and the y(i,j)’s Lagrange multipliers. 821

The computational, communication and memory costs of 822

these algorithms is reported in Table II. Notice that the com- 823

putational and memory costs of ADMM algorithms depends on 824

how nodes minimize the local augmented Lagrangian Li(xi, k). 825

E.g., in our simulations the step has been performed through a 826

dedicated Newton-Raphson procedure with associated O(n3) 827

computational costs and O(n2) memory costs. 828
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TABLE II
COMPUTATIONAL, COMMUNICATION AND MEMORY COSTS OF DSM,

DCM, AND ADMM PER SINGLE UNIT AND SINGLE STEP

Fig. 5. Convergence properties of the various algorithms for the problems
described in Section V-B. (a) Relative MSE at a given time k as a function of the
algorithms parameters for problem (35). For the DCM, ν = 1.7. (b) Relative
MSE as a function of the time k for the three fastest algorithms for problem
(35). Their parameters are chosen as the best ones from Fig. 5(a). (c) Relative
MSE at a given time k as a function of the algorithms parameters for problem
(36). For the DCM, ν = 1.7. (d) Relative MSE as a function of the time k for
the three fastest algorithms for problem (36). Their parameters are chosen as
the best ones from Fig. 5(c).

Fig. 5 then compares the previously cited algorithms as did829

in Fig. 3. The first panel thus reports the relative MSE of the830

various algorithms at a given number of iterations (k = 40) as a831

function of the parameters. The second panel instead reports the832

temporal evolution of the relative MSE for the case of optimal833

tuning.834

We notice that the DCM and the DSM are both much slower, 835

in terms of communications iterations, than the NRC, FNRC 836

and ADMM. Moreover, both the NRC and its accelerated 837

version converge faster than the ADMM, even if not tuned at 838

their best. These numerical examples seem to indicate that the 839

proposed NRC might be a viable alternative to the ADMM, 840

although further comparisons are needed to strengthen this 841

claim. Moreover, a substantial potential advantage of NRC as 842

compared to ADMM is that the former can be readily adapted 843

to asynchronous and time-varying graphs, as preliminary made 844

in [62]. Moreover, as in the case of the FNRC, the strategy can 845

implement any improved linear consensus algorithm. 846

VI. CONCLUSION 847

We proposed a novel distributed optimization strategy suit- 848

able for convex, unconstrained, multidimensional, smooth and 849

separable cost functions. The algorithm does not rely on La- 850

grangian formalisms and acts as a distributed Newton-Raphson 851

optimization strategy by repeating the following steps: agents 852

first locally compute and update second order Taylor expan- 853

sions around the current local guesses and then they suitably 854

combine them by means of average consensus algorithms to 855

obtain a sort of approximated Taylor expansion of the global 856

cost. This allows each agent to infer a local Newton direction, 857

used to locally update the guess of the global minimum. 858

Importantly, the average consensus protocols and the local 859

updates steps have different time-scales, and the whole al- 860

gorithm is proved to be convergent only if the step-size is 861

sufficiently slow. Numerical simulations based on real-world 862

databases show that, if suitably tuned, the proposed algorithm 863

is faster then ADMMs in terms of number of communication 864

iterations, although no theoretical proof is provided. 865

The set of open research paths is extremely vast. We envisage 866

three main avenues. The first one is to study how the agents 867

can dynamically and locally tune the speed of the local updates 868

w.r.t. the consensus process, namely how to tune their local 869

step-size εi. In fact large values of ε gives faster convergence 870

but might lead to instability. A second one is to let the commu- 871

nication protocol be asynchronous: in this regard we notice that 872

some preliminary attempts can be found in [62]. A final branch 873

is about the analytical characterization of the rate of conver- 874

gence of the proposed strategies, a theoretical comparison with 875

ADMMs, and the extensions to non-smooth convex functions. 876

APPENDIX 877

Proof (of Theorem 2): Proof of a): integrating (5a) twice 878

implies 879

1

2
a1‖x‖2 ≤ V (x) ≤ 1

2
a2‖x‖2

that, jointly with (5b), immediately guarantee global exponen- 880

tial stability for (4) [46, Thm. 4.10]. 881

Proof of b): consider 882

∆V (x(k)) := V (x(k + 1))− V (x(k)) . (37)

To prove the claim we show that ∆V (x(k)) ≤ −d‖x(k)‖2 for 883

some positive scalar d. To this aim, expand V (x(k + 1)) with a 884
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second order Taylor expansion around x(k) with remainder in885

Lagrange form, to obtain886

V (x+ εφ(x))=V (x)+ ε
∂V

∂x
φ(x)+

1

2
ε2φT (x)∇2V (xε)φ(x)

with xε = x+ ε′φ(x) for ε′ ∈ [0, ε]. Using inequalities (5) we887

then obtain888

∆V (x(k)) =V (x(k + 1))− V (x(k))

≤ −εa3 ‖x(k)‖2 +
1

2
ε2a2a

2
4 ‖x(k)‖2

= −ε

(
a3 − ε

1

2
a2a

2
4

)
‖x(k)‖2 .

Thus, for all ε < ε = 2a3/a2a
2
4 the origin is globally exponen-889

tially stable. �890

Proof (of Theorem 3): Proof of a): Assumption 1 guarantees891

that VNR(0) = 0 and VNR(x) > 0 for x �= 0. Moreover, for892

x �= 0893

∂VNR

∂x
φNR(x) = −

(
∇f ′(x)

)T
h′(x)−1∇f ′(x)

= −
∥∥∥h′(x)−

1
2 ∇f ′(x)

∥∥∥2 < 0.

Proof of b): Assumption 1 guarantees that (11a) is satisfied894

with b1 = c and b2 = m. To prove (11c) we start by considering895

that (11a) guarantees c‖x‖ ≤ ‖∇f ′(x)‖ ≤ m‖x‖. This in its896

turn implies897

‖φNR(x)‖ =

∥∥∥∥h′
−1
(x)∇f ′(x)

∥∥∥∥ ≤ 1

c

∥∥∇f ′(x)
∥∥ ≤ m

c
‖x‖

= b4‖x‖.

To prove (11b) eventually consider then that (11c) implies898

∂VNR

∂x
φNR(x) = −

(
∇f ′(x)

)T
h′(x)−1∇f ′(x)

≤ − c2

m
‖x‖2 = −b3‖x‖2.

�899

Proof (of Theorem 6): In the interest of clarity we analyze900

the case where the local costs f ′
i are scalar, i.e., n = 1. The901

multivariable case is indeed a straightforward extension with902

just a more involved notation. We also recall the following903

equivalences:904

x =x‖ + x⊥, (x⊥)Tx‖ = 0

‖x‖2 = ‖x‖‖2 + ‖x⊥‖2 = N |x|2 + ‖x⊥‖2.

Proof of a): VPNR(0) = 0 and VPNR(x) > 0 for x �= 0 fol-905

low immediately from the fact that VNR(0)=0 and VNR(x)>0906

for x �= 0. V̇PNR < 0 is instead proved by proving (22b).907

Proof of Inequality (22a): given (21)908

∂2VPNR(x)

∂x2
=

∂2
(
VNR(x) +

1
2η‖x⊥‖2

)
∂x2

.

Since 0 ≤ ‖x⊥‖2 ≤ ‖x‖2 and909

∂2VNR(x)

∂x2
=

1

N2
1l1lT∇2VNR(x)

thanks to (11a) it follows immediately that (22a) holds with 910

b5 := min

{
b1
N

, η

}
, b6 := max

{
b2
N

, η

}
.

Proof of Inequality (22c): since the origin of f ′ is a mini- 911

mum, it follows that ∇f ′(0) = 0, and thus g′(0) = 0 [cf. (14)]. 912

Thus also ψ(0) = 0, that in turn implies ‖ψ(x)‖ ≤ aψ‖x‖ by 913

Assumption 5. Therefore 914

‖φPNR(x)‖ ≤ ‖x‖+N ‖ψ(x)‖ ≤ (1 +Naψ)‖x‖ = b8‖x‖.

Proof of Inequality (22b): since 915

∂x

∂x
=

1

N
1lTN ,

∂x⊥

∂x
= I − 1

N
1lN1lTN =: Π

it follows that: 916

∂VPNR

∂x
φPNR(x) =

(
∂VPNR

∂x

∂x

∂x
+

∂VPNR

∂x⊥
∂x⊥

∂x

)
φPNR(x)

=

(
∂VNR(x)

∂x

1

N
1lTN+η(x⊥)

T
Π

)
φPNR(x).

Considering then (17), the definition of x and x⊥, and the fact 917

that Π1lN = 0, it follows that: 918

∂VPNR

∂x
φPNR(x) =

∂VNR(x)

∂x
(−x+ ψ(x)) + η(x⊥)T (−x⊥)

Adding and subtracting (∂VNR(x)/∂x)ψ(x
‖), and recalling 919

definition (7) and equivalence (16c), since (−x+ ψ(x‖)) = 920

φNR(x) it then follows that: 921

∂VPNR

∂x
φPNR(x) =

∂VNR(x)

∂x
φNR(x)− η‖x⊥‖2

+
∂VNR(x)

∂x

(
ψ(x)− ψ(x‖)

)
≤ −b3x

2 − η‖x⊥‖2 + b2|x|aψ‖x− x‖‖
= −b3x

2 − η‖x⊥‖2 + b2aψ|x|‖x⊥‖

≤ − b3 + η

2

(
|x|2 + ‖x⊥‖2

)
≤ − b3 + η

2

(
N |x|2 + ‖x⊥‖2

)
= − b3 + η

2N
‖x‖2 = −b7‖x‖2

where for obtaining the various inequalities we used the various 922

assumptions and where the second inequality is valid for η > 923

b22a
2
ψ/b3. � 924

Proof (of Lemma 7): Proof of (26a): notice that φx(x,χ) is 925

globally defined since [·]c ensures that the matrix inverse exists. 926

Also note that, since h′(x) ≥ cI > (c/2)I by Assumption 5, 927

then there exists r > 0 such that, for ‖x‖+ ‖χ‖ ≤ r 928

φx(x,χ) = −x− 1lN ⊗ x∗ +
χy + 1lN ⊗

(
g′(x) + h′(x)x∗)

χz + 1lN ⊗ h′(x)
.

The differentiability of the elements defining φx, plus the fact 929

that [·]c acts as the identity in the neighborhood under consider- 930

ation implies that φx is locally differentiable in ‖x‖+‖χ‖≤r. 931
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Fig. 6. Inequality (38) represents a proper cone defined in the neighborhood
of radius r, while inequality (39) represents an improper cone defined in the
whole domain.

In addition to this local differentiability, also observe that932

φx(0,0) = 0, therefore there must exist a1 > 0 s.t.933

‖φx(x,χ)‖ ≤ a1 (‖x‖+ ‖χ‖) , ∀ (‖x‖+ ‖χ‖) ≤ r. (38)

To extend the linear inequality (38) for (x,χ) s.t. (‖x‖+934

‖χ‖) ≥ r we then prove that φx(x,χ) cannot grow more than935

linearly globally. In fact936

‖φx(x,χ)‖ ≤‖x‖+N‖x∗‖+2

c

∥∥χy+1l⊗
(
g′(x)+h′(x)x∗)∥∥

≤‖x‖+N‖x∗‖+ 2

c
‖χ‖

+
2N

c

(
‖g′(x)‖+ ‖x∗‖‖h′(x)‖

)
≤‖x‖+N‖x∗‖+ 2

c
‖χ‖+ 2N

c
ag‖x‖

+
2N

c
‖x∗‖

(
ah‖x‖+ ‖h′(0)‖

)
≤ a2 + a3 (‖x‖+ ‖χ‖) , ∀x,χ (39)

where we used Assumption 5 and where a2, a3 are suitable937

positive scalars. In particular inequality (39) is valid for (‖x‖+938

‖χ‖) > r. As depicted in Fig. 6, inequalities (38) and (39)939

define two cones, one affine (shifted by a2) and one proper.940

Therefore, combining the geometry of the two cones leads941

to an inequality that is defined in the whole domain. In other942

words, it follows that:943

‖φx(x,χ)‖ ≤ ax (‖x‖+ ‖χ‖) ∀x,χ

where944

ax := max

{
a1,

a2 + a3r

r

}
.

Proof of (26b): Let ∆(x,χ) := φx(x,χ)− φPNR(x), with945

φPNR as in (17). Then there exists a positive scalar r > 0 such946

that, for all ‖χ‖+ ‖x‖ ≤ r947

∆(x,χ) = −1lN ⊗ x∗ +
χy + 1lN ⊗

(
g′(x) + h′(x)x∗)

χz + 1lN ⊗ h′(x)
− 1lN ⊗ ψ(x)

=
χy + 1lN ⊗

(
g′(x) + h′(x)x∗)

χz + 1lN ⊗ h′(x)

−
1lN ⊗

(
g′(x) + h′(x)x∗)
1lN ⊗ h′(x)

.

Considerations similar to the ones that led us claim the differ-948

entiability of φx in the proof of Lemma 7 imply that ∆(x,χ)949

is continuously differentiable for ‖χ‖+ ‖x‖ ≤ r. Moreover,950

since ∆(x,0) = 0, then there exists a positive scalar a4 > 0951

s.t.952

‖∆(x,χ)‖ ≤ a4‖χ‖ ‖χ‖+ ‖x‖ ≤ r. (40)

By using (19a) and (19b) we can then show that ∆(x,χ) cannot 953

grow more than linearly in the variable χ, since 954

‖∆(x,χ)‖=
∥∥∥∥∥χy + 1lN ⊗

(
g′(x) + h′(x)x∗)[

χz + 1lN ⊗ h′(x)
]
c

− 1lN ⊗
(
x∗ +

g′(x)

h′(x)

)∥∥∥∥
≤ 2

c

(
‖χ‖+2N‖g′(x)‖+N‖x∗‖‖h′(x)‖

)
+N‖x∗‖

≤ a5 + a6‖χ‖, ∀x,χ (41)

for suitable positive scalars a5 and a6. Repeating the same 955

geometrical arguments used above we then obtain 956

‖∆(x,χ)‖ ≤ a∆‖χ‖, ∀x,χ

with 957

a∆ := max

{
a3,

a5 + a6r

r

}
.

� 958

Proof (of Theorem 8): For notational brevity we omit the 959

dependence on ξ, i.e., let xeq = xeq(ξ) and xeq = xeq(ξ). 960

We start by assuming that there exists a xeq(ξ) satisfying 961

(27) for ‖ξ‖ ≤ r and prove that xeq(ξ) must satisfy xeq(ξ) = 962

1lN ⊗ xeq(ξ) and (28). Consider then r sufficiently small. Then, 963

since h′(x) > cI by Assumption 1 964[
ξz + 1lN ⊗ h′(x)

]
c
=ξz+1lN ⊗ h′(x)=1lN ⊗

(
h′(x) + ξz

)
.

This implies that for ‖ξ‖ ≤ r we have 965

φx(x
eq, ξ) = −xeq

− 1lN ⊗
(
x∗ −

(
ξz + h′(xeq)

)−1 (
ξy+g′(xeq)+h′(xeq)x∗)) .

Therefore φx(x
eq, ξ) = 0 if and only if 966

xeq
i = −x∗ +

(
ξz + h′(xeq)

)−1 (
ξy + g′(xeq) + h′(xeq)x∗) .

Since the right-hand-side is independent of i, this implies both 967

that the xeq(ξ) satisfying (27) must satisfy xeq = 1l⊗ xeq, 968

and that its expression is given by (28) (indeed (28) can be 969

retrieved immediately from the equivalence above since −x∗ = 970

(ξz + h′(xeq))−1(−ξzx∗ − h′(xeq)x∗)). 971

We now prove (27) by exploiting the Implicit Function 972

Theorem [63]. If we indeed substitute the necessary condition 973

xeq = 1lN ⊗ xeq into the definition of φx(x
eq, ξ), we obtain the 974

parallelization of N equivalent equations of the form 975

xeq + x∗ =
(
h′(xeq) + ξz

)−1 (
g(xeq) + ξy + h′(xeq)x∗

)
where we used properties (16a) and (16b) that lead to h′(1lN ⊗ 976

x) = h′(x) and g′(1lN ⊗ x) = g′(x). 977

Moreover, Assumption 5 ensures that h′(x∗) ≥ cI . Thus, 978

for the continuity assumptions in Assumption 1, there exists a 979

sufficiently small r > 0 s.t. if ‖ξz‖ ≤ ‖ξ‖ ≤ r then h′(x∗) + ξz 980

is still invertible. Therefore 981

g′(xeq)+ ξy+ h′(xeq)x∗ = h′(xeq)(xeq+ x∗)+ ξz(xeq+ x∗).
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Exploiting now the equivalence g′(xeq) = h′(xeq)xeq −982

∇f ′(xeq), it follows that xeq must satisfy the following983

condition:984

∇f ′(xeq)− ξy + ξz(xeq + x∗) = 0.

Given Assumption 1, the left-hand side of the previous inequal-985

ity is a continuously differentiable function, since986

∂
(
∇f ′(xeq)− ξy + ξz(xeq + x∗)

)
∂xeq

= ∇2f ′(xeq) + ξz.

Notice moreover that if r is sufficiently small (i.e., ‖ξz‖ is suf-987

ficiently small) then the differentiation is an invertible matrix,988

since once again ∇2f ′(x∗) ≥ cI by assumption. Therefore, by989

the Implicit Function Theorem, xeq(ξ) exists, is unique and990

continuously differentiable. �991

Proof (of Theorem 10): Proof of a): VPNR(0) = 0 and992

VPNR(x) > 0 for x �= 0 have been proved before. V̇PNR < 0993

is instead proved by proving (31a).994

Proof of b): as for (31a), consider that, ∀x ∈ R
nN995

∂VPNR

∂x
φ′
x(x, ξ) =

∂VPNR

∂x
φ′
x(x, 0) +

∂VPNR

∂x
× (φ′

x(x, ξ)− φ′
x(x, 0))

≤ ∂VPNR

∂x
φPNR(x) +

∥∥∥∥∂VPNR

∂x

∥∥∥∥
× ‖φ′

x(x, ξ)− φ′
x(x, 0)‖

≤ −b7‖x‖2 + b6‖x‖aξ‖ξ‖‖x‖
≤ −(b7 − b6aξr)‖x‖2 ≤ −b′7‖x‖2.

Notice that this inequality is meaningful for r < (b7/b6aξ).996

As for (31b), consider that, ∀x ∈ R
nN997

‖φ′
x(x, ξ)‖ ≤ ‖φ′

x(x, 0)‖+ ‖φ′
x(x, ξ)− φ′

x(x, 0)‖
≤ (b8 + aξr)‖x‖ ≤ b′8‖x‖.

�998

Proof (of Theorem 11): The miminizer of the global cost999

function is easily seen to be x∗ = (
∑

i Ai)
−1(

∑
i Aidi) from1000

which it follows that f ′(x) = (1/N)xTAx. Clearly f(x) sat-1001

isfies Assumption 1 since ∇2f(x) = (1/N)A > 0 is indepen-1002

dent of x. Considering then h′
i(x) = ∇2f ′

i(x) = Ai it follows1003

after some suitable simplifications that:1004

h′(x) =
1

N
A

g′i(x) =Aix−Ai(x+ x∗ − di) = Ai(di − x∗)

g′(x)− g′(x′) = 0

g′(x) =
1

N

(∑
i

Aidi −
∑
i

Aix
∗

)
= 0

h′(x)− h′(x′) = 0

ψ(x) =h
−1
(x)g(x) = 0

xeq(ξ) =

(
1

N
A+ ξz

)−1

(ξy − ξzx∗)

φ′
x(x, ξ) =φ′

x(x, 0) = −x

where in the last equivalence we exploited definition (28). Thus1005

also the other assumptions are satisfied. �1006

Proof (of Theorem 12): The proof considers the system 1007

as an autonomous singularly perturbed system, and proceeds 1008

as follows: a) show that x∗ is an equilibrium; b) perform a 1009

change of variables; c) construct a Lyapunov function for the 1010

boundary layer system; d) construct a Lyapunov function for 1011

the reduced system; e) join the two Lyapunov functions into 1012

one, and show (by cascading the previously introduced Lemmas 1013

and Theorems) that the complete system (43) converges to x∗ 1014

while satisfying the hypotheses of Theorem 2. By doing so it 1015

follows that (42), i.e., Algorithm 1, is exponentially stable. 1016

For notational simplicity we let x∗ := 1lN ⊗ x∗. We also use 1017

all the notation collected in Section II. 1018

• Discrete to continuous dynamics) The dynamics of 1019

Algorithm 1 can be written in state space as 1020
v(k) = g (x(k − 1))
w(k) = h (x(k − 1))
y(k) = P [y(k − 1) + g (x(k − 1))− v(k − 1)]
z(k) = P [z(k − 1) + h (x(k − 1))−w(k − 1)]

x(k) = (1− ε)x(k − 1) + ε y(k−1)
[z(k−1)]c

(42)

with suitable initial conditions. (42) can then be inter- 1021

preted as the forward-Euler discretization of 1022
εv̇(t) = −v(t) + g (x(t))
εẇ(t) = −w(t) + h (x(t))
εẏ(t) = −Ky(t) + (I −K) [g (x(t))− v(t)]
εż(t) = −Kz(t) + (I −K) [h (x(t))−w(t)]

ẋ(t) = −x(t) + y(t)
[z(t)]c

(43)

with null initial conditions, where ε is the discretization 1023

time interval and K := I − P . Notice that, as for P , if 1024

n is the dimension of the local costs then P = P ′ ⊗ In 1025

with P ′ a doubly-stochastic average consensus matrix. 1026

Nonetheless for brevity we will omit the superscripts ′. 1027

• b) let 1028

v′ :=v − g(x)

w′ :=w − h(x)

y′ :=y − v′ − 1lN ⊗ g(x)

z′ := z −w′ − 1lN ⊗ h(x)

x′ :=x− x∗

φg(x
′) :=

∂g

∂x′ − 1lN ⊗ ∂g

∂x′

φh(x
′) :=

∂h

∂x′ − 1lN ⊗ ∂h

∂x′

φx(x
′, χ) := −x′(t)− x∗+

+
y′(t) + v′(t) + 1lN ⊗ g (x′(t) + x∗)[
z′(t) +w′(t) + 1lN ⊗ h (x′(t) + x∗)

]
c

with χ := (v′,w′,y′, z′), so that (43) becomes 1029
εv̇′(t) = −v′(t)− ε ∂g

∂x′ ẋ
′(t)

εẇ′(t) = −w′(t)− ε ∂h
∂x′ ẋ

′(t)
εẏ′(t) = −Ky′(t) + εφg(x

′)ẋ′(t)
εż′(t) = −Kz′(t) + εφh(x

′)ẋ′(t)
ẋ′(t) = φx(x

′,χ′)

(44)
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with initial conditions1030 
v′(0) = v(0)− g (x(0))
w′(0) = w(0)− h (x(0))
y′(0) = y(0)− v(0) + g⊥ (x(0))
z′(0) = z(0)−w(0) + h⊥ (x(0))
x′(0) = x(0)− x∗

where g⊥(x) := g(x)− 1lN ⊗ g(x) (equivalent definition1031

for h⊥). Notice that (44) has the origin as an equilibrium1032

point. Moreover this dynamics exploits the function φx1033

defined in (24), with χy = y′ + v′, and χz = z′ +w′.1034

The next step is to exploit the structure of K (more precisely,1035

the fact that it contains an average consensus matrix) to reduce1036

the dynamics, i.e., to eliminate the dynamics of the average1037

since the latter does not change in time. To this aim, we analyze1038

the behavior of the average of the y′is, i.e., the behavior of1039

(1lTN ⊗ In)ẏ
′. To this point, consider the third equation in (44).1040

Recalling that (A⊗B)(C ⊗D) = AB ⊗ CD, and exploiting1041

the fact that 1lTNP ′ = 0, we notice that (1lTN ⊗ In) K = 0.1042

Moreover, from the definitions of g and g1043 (
1lTN ⊗ In

) ∂g(x′)

∂x′ = N
∂g(x′)

∂x′ .

Since N = 1lTN1lN , it follows also that:1044 (
1lTN ⊗ In

)
φg(x

′) = 0

for all t ≥ 0, i.e., 1lTy′(t) = 1lTy′(0) ≡ 0. Similarly it is possi-1045

ble to show that z′(t) ≡ 0. This eventually implies that1046

y′‖(t) = 0 z′‖(t) = 0 ∀t

that means, recalling that y′ = y′‖ + y′⊥ and z′ = z′‖ + z′⊥,1047

that (44) can be equivalently rewritten as1048 
εv̇′(t) = −v′(t)− ε ∂g

∂x′φx(x
′,χ′)

εẇ′(t) = −w′(t)− ε ∂h
∂x′φx(x

′,χ′)

εẏ′⊥(t) = −Ky′⊥(t) + εφg(x
′)φx(x

′,χ′)
εż′⊥(t) = −Kz′⊥(t) + εφh(x

′)φx(x
′,χ′)

ẋ′(t) = φx(x
′,χ′)

(45)

where now χ′ := (v,w,y′⊥, z′⊥) and where the novel initial1049

conditions for the changed variables are1050 {
y′⊥(0) = y⊥(0)− v⊥(0) + g⊥ (x(0))
z′⊥(0) = z⊥(0)−w⊥(0) + h⊥ (x(0))

• c) the boundary layer of (45) is computed by setting1051

x′(t) = x′. Since a constant x′ implies ẋ′ = φx = 0, this1052

boundary layer reduces to a linear system globally expo-1053

nentially converging to the origin. Notice that this implies1054

that, in the original coordinates system1055

v = g(x), w = h(x), y = 1lN ⊗ g(x), z = 1lN ⊗ h(x).

In the novel coordinates system we thus consider, as a1056

Lyapunov function, (1/2)‖χ′‖2.1057

• d) the reduced system of (45) is computed by plugging1058

χ′ = 0 into the equations (i.e., by setting v′(t) = 0,1059

w′(t) = 0, y′⊥(t) = 0, z′⊥(t) = 0). Defining then1060

f ′
i(x

′) := fi(x
′ + x∗), h′

i(x
′) := hi(x

′ + x∗)

we obtain 1061

ẋ′(t) = −x′(t)− x∗ + 1lN ⊗ g′ (x′(t))

h′ (x′(t))
= −x′(t)− x∗ + 1lN

⊗ h′ (x′(t)) (x′(t) + x∗)−∇f ′ (x′(t))

h′ (x′(t))

= −x′(t) + 1lN ⊗ h′ (x′(t))x′(t)−∇f ′ (x′(t))

h′ (x′(t))
= −x′(t) + 1lN ⊗ ψ (x′(t))

=φPNR(x
′)

where ψ and φPNR are the functions defined in (15) and 1062

(17), respectively. Thus the reduced system, thanks to 1063

Theorem 6, admits x∗ as a global exponentially stable 1064

equilibrium, and admits VPNR in (21) as a Lyapunov 1065

function. 1066

• e) we now notice that the interconnection of the boundary 1067

layer and reduced systems maintains the global stability, 1068

since their Lyapunov functions are quadratic type. Thus 1069

(see [46, pp. 453]) the global system is asymptotically 1070

globally stable. To check that forward-Euler discretiza- 1071

tions of the system preserve these stability properties we 1072

then consider as a global Lyapunov function the function 1073

V (x′,χ′) = (1− d)VPNR(x
′) + d

1

2
‖χ′‖2

that is clearly positive definite for every d ∈ (0, 1), and 1074

prove that inequalities (5) of Theorem 2 are satisfied. 1075

Proof That (5a) Holds: from (22a) and the structure of V it 1076

follows immediately that: 1077

((1− d)b5 + d) I ≤ ∇2V (x′,χ′) ≤ ((1− d)b6 + d) I.

Proof That (5c) Holds: applying (20) and (26a) to (45) it 1078

follows that (5c) holds with 1079

a4 = aV := max{1 + 2εagax, 1 + 2εahax, ax}.

Proof That (5b) Holds: the part relative to the slow dynamics 1080

is already characterized by (31a). For the part relative to the fast 1081

dynamics, since (∂(1/2)‖χ‖2)/∂χ = χT to check that (5b) 1082

corresponds to check the negativity of the terms 1083

− v′Tv′ − εv′T ∂g

∂x′φx(x
′,χ′)

−w′Tw′ − εw′T ∂h

∂x′φx(x
′,χ′)

− (y′⊥)
T
Ky′ ⊥ +εy′⊥Tφg(x

′)φx(x
′,χ′)

− (z′⊥)
T
Kz′ ⊥ +εz′⊥Tφh(x

′)φx(x
′,χ′).

These terms can then be majorized using (20) and (26a). E.g., 1084

the third term can be majorized with 1085

−σ(P )‖y′⊥‖2 + 2εagax‖y′⊥‖ (‖x‖+ ‖χ‖)

where σ(P ) is the spectral gap of P . Applying similar concepts 1086

also to the other terms it follows that (5b) holds with 1087

a3 = min {σ(P )− 2εagax, σ(P )− 2εahax} .

� 1088
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Proof (of Theorem 13): The proof is identical to the one1089

of Theorem 12 with the exception that the substitution is1090

now x′′ = x− x∗ − 1lN ⊗Ψ(ξy, ξz). Indeed one can prove1091

the stability of the novel system using the same Lyapunov1092

function of Theorem 12. Notice that we are ensured that there1093

exists a sufficiently small neighborhood of the origin for which1094

the function Ψ exists due to the smoothness conditions in1095

Assumption 1. �1096

Proof (of Theorem 14): The proof is the local version of the1097

one in Theorem 13. Indeed the local versions of Assumptions 1,1098

5, and 9 always hold, i.e., they hold when considering x s.t.1099

‖x‖ ≤ r′, and one can thus repeat that reasonings using local1100

perspectives. �1101

Proof (of Theorem 15): Consider for simplicity the scalar1102

case. Let y∗ := (1/N)
∑

i Aidi and z∗ := (1/N)
∑

i Ai, so1103

that x∗ = y∗/z∗. Since y(k + 1) = Py(k) and z(k + 1) =1104

Pz(k), given the assumptions on P , there exist positive αy ,1105

αz independent of x(0) s.t. |yi(k)− y∗| ≤ αy(ρ(P ))k and1106

|zi(k)− z∗| ≤ αz(ρ(P ))k. The claim thus follows considering1107

that xi(k) = yi(k)/[zi(k)]c and that, since the elements of P1108

are non negative, all the zi(k) are non smaller than c for all1109

k ≥ 0 (i.e., the operator [·]c is always performing as the identity1110

operator). �1111
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[30] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi- 1193
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48– 1194
61, 2009. 1195

[31] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental 1196
subgradient method for distributed optimization in networked systems,” 1197
SIAM J. Optim., vol. 20, no. 3, pp. 1157–1170, 2009. 1198

[32] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent optimiza- 1199
tion with state-dependent communication,” Math. Programming, vol. 129, 1200
no. 2, pp. 255–284, 2011. 1201
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